
1© 2017 The MathWorks, Inc.

Increasing Design Confidence

Model and Code Verification

2

The Cost of Failure…

$7,500,000,000

Ariane 5

Rocket & payload lost

3

The Cost of Failure…

0 Knots
Top speed

0

USS Yorktown

4

The Cost of Failure…

Casualties
due to radiation overdose

6

Therac-25

5

Motivation

It is easier and less expensive to fix design errors

early in the process when they happen.

Model-Based Design enables:

1. Early testing to increase confidence in your design

2. Delivery of higher quality software throughout the workflow

6

Gaining Confidence in our Design

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling
standards

Model & code
equivalence
checks

Code
integration
analysis

7

Application: Cruise Control

50 km/h

Control speed according to setpoint

8

System

Inputs OutputsFuel Rate Control

Module

Shift Logic

Control Module

ECU

system

L
e

g
a

c
y
 c

o
d

e

ECU

Application: Cruise Control

2
Cruise Control

Module (MBD)

1

9

System

Inputs OutputsFuel Rate Control

Module

Shift Logic

Control Module

ECU

system

L
e

g
a

c
y
 c

o
d

e

ECU

Application: Cruise Control

Cruise Control

Module (MBD)

10

Application: Cruise Control

Cruise_onoff

Brake

Speed

Coast set

Accel reset

Inputs

Engaged

Target speed

Outputs

Cruise Control

Module (MBD)

11

Gaining Confidence in our Design

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling &
coding
standards

Code equiv.
& integration
checks

12

Ad-hoc Tests

Dashboard blocks facilitate

early ad-hoc testing

13

Gaining Confidence in our Design

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling &
coding
standards

Code equiv.
& integration
checks

14

Finding Design Errors: Dead Logic

15

Finding Unintended Behavior

 Dead logic due to “uint8” operation on incdec/holdrate*10

 Fix change the order of operation 10*incdec/holdrate

Condition can never be false

16

Gaining Confidence in our Design

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling &
coding
standards

Code equiv.
& integration
checks

17

Simulation Testing Workflow

Structural coverage

report

Did we completely

test our model?

Did we meet

requirements?

Review functional

behavior

Design

Requirements

18

Did We Completely Test our Model?

Model Coverage

Analysis

Potential causes of less

than 100% coverage:

 Missing requirements

 Over-specified design

 Design errors

 Missing tests

19

Requirements Based Functional Testing with Coverage Analysis

 All 14 requirements based test cases pass

 By analyzing model coverage results we find:

– Missing test cases for vehicle speed exit conditions, and

– Missing requirements (and test cases) for “hold” or

continuous speed button input

20

Functional Testing with Added Requirements & Test Cases

21

Functional Testing with Added Requirements & Test Cases

 Added 2 new requirements for the “hold” case for speed setting input buttons

 Added 5 test cases to the original 14 requirements based test cases

– 3 test cases for the 2 new requirements

– 2 test cases for the missing test cases for the vehicle speed exist conditions

 4/5 new functional test cases pass

– Failed test case showed overshoot beyond target speed limits

– Coverage analysis highlighted transitions with design errors

– Fixed comparison operators, (<)  (<=), and (>)  (>=)

 Now all (19) functional test cases pass with 100% model coverage!

22

Gaining Confidence in our Design

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling
standards

Code equiv.
& integration
checks

23

Model Advisor – Model Standards Checking

24

Gaining Confidence in our Design

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling
standards

Model & code
equivalence
checks

25

Equivalence Testing:

Model vs SIL or PIL Mode Testing

Model

Testing

SIL or PIL

Mode Testing

Coverage 100%

26

Code Generation with Model-to-Code Traceability

27

Code Generation with Model-to-Code Traceability

28

Code Equivalence Check Results:

Model vs Code

29

Code Equivalence Check Results:

Model vs Code

30

Code Equivalence Check Results:

Model vs Code Code Coverage

31

Code Equivalence Check Results:

Model vs Code Code Coverage

 Re-used full coverage test vectors and harnesses from Model Verification testing

 Ran test vectors on generated code using Model Reference SIL mode

 Equivalence test performed in Simulink Test, including test execution, evaluation

and presentation of the results

 Compared Model Coverage to Code Coverage using the SIL Code Coverage

Report

 Successfully demonstrated code behavior matches model behavior!

32

Gaining Confidence in our Design

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling
standards

Model & code
equivalence
checks

Code
integration
analysis

33

System

Inputs OutputsFuel Rate Control

Module

Shift Logic

Control Module

ECU

system

L
e

g
a

c
y
 c

o
d

e

ECU

2
Cruise Control

Module (MBD)

1

Code Integration Analysis

34

Fuel Rate Control

Module

Shift Logic

Control Module

ECU

system

L
e

g
a

c
y
 c

o
d

e

ECU

Code Integration Analysis

2

Cruise_onoff

Brake

Speed

Coast set

Accel reset

EGO Sensor

MAP Sensor

Inputs

Gear

Engaged

Target speed

Fuel Rate

Outputs
Cruise Control

Module (MBD)

35

Fuel Rate Control

Module

Shift Logic

Control Module

ECU

system

L
e

g
a

c
y
 c

o
d

e

ECU

Cruise_onoff

Brake

Speed

Coast set

Accel reset

EGO Sensor

MAP Sensor

Inputs

Gear

Engaged

Target speed

Fuel Rate

Outputs

Inaccurate

scaling for

speed

Finding Dead Code During Integration

D
e
a
d
 c

o
d
e

Cruise Control

Module (MBD)

2

36

Finding Dead Code with Polyspace

Dead code

Maximum target speed = 90Target speed parameter

propagated to “Cruise_ctrl.c”

[0 … 40]

37

Root Cause for Dead Code: Speed Sensor Input Hand Code

Changing analog-to-digital converter from 14 to 12-bit results in dead code

MASK – accounts for scaling

down for new ADC from 14-bit to

12-bit

CONV_FACTOR – accounts for

translating sensor input counts to

mph

Overlooked changing

CONV_FACTOR for new ADC

38

Polyspace Code Analysis

static void pointer_arithmetic (void) {

int array[100];

int *p = array;

int i;

for (i = 0; i < 100; i++) {

*p = 0;

p++;

}

if (get_bus_status() > 0) {

if (get_oil_pressure() > 0) {

*p = 5;

} else {

i++;

}

}

i = get_bus_status();

if (i >= 0) {

*(p - i) = 10;

}

}

Start with C/C++ source code

39

Polyspace Code Analysis

static void pointer_arithmetic (void) {

int array[100];

int *p = array;

int i;

for (i = 0; i < 100; i++) {

*p = 0;

p++;

}

if (get_bus_status() > 0) {

if (get_oil_pressure() > 0) {

*p = 5;

} else {

i++;

}

}

i = get_bus_status();

if (i >= 0) {

*(p - i) = 10;

}

}

Source code painted in green, red, gray, orange

Green: reliable
safe pointer access

Red: faulty
out of bounds error

Gray: dead
unreachable code

Orange: unproven
may be unsafe for some

conditions

Purple: violation
MISRA-C/C++ or JSF++

code rules

variable ‘I’ (int32): [0 .. 99]

assignment of ‘I’ (int32): [1 .. 100]

Range data
tool tip

40

Effort / Time

C
o
n
fi
d
e
n
c
e

Ad-hoc
testing

Design
error
detection

Functional
& structural
tests

Modeling
standards

Model & code
equivalence
checks

Code
integration
analysis

Gaining Confidence in our Design

41

Conclusion: Model-Based Design Verification Workflow

Model Verification
Discover design errors at design time

Code Verification
Gain confidence in the generated code

Workflow approved by TÜV SÜD for development of safety-critical software in accordance with

ISO 26262 (automotive), IEC 61508 (industrial), EN 50128 (railway), IEC 62304 (medical devices)

42

Conclusion

It is easier and less expensive to fix design errors

early in the process when they happen.

Model-Based Design enables:

1. Early testing to increase confidence in your design

2. Delivery of higher quality software throughout the workflow

43

Change the world by

Accelerating the pace
of discovery, innovation, development, and learning

in engineering and science

