
1© 2017 The MathWorks, Inc.

Increasing Design Confidence

Model and Code Verification



2

The Cost of Failure…

$7,500,000,000

Ariane 5

Rocket & payload lost
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The Cost of Failure…

0 Knots
Top speed

0

USS Yorktown
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The Cost of Failure…

Casualties
due to radiation overdose

6

Therac-25
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Motivation

It is easier and less expensive to fix design errors 

early in the process when they happen.

Model-Based Design enables:

1. Early testing to increase confidence in your design

2. Delivery of higher quality software throughout the workflow
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Application: Cruise Control

50 km/h

Control speed according to setpoint
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Application: Cruise Control

Cruise_onoff

Brake

Speed

Coast set

Accel reset

Inputs

Engaged

Target speed

Outputs

Cruise Control 

Module (MBD)
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Ad-hoc Tests

Dashboard blocks facilitate

early ad-hoc testing
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Finding Design Errors: Dead Logic
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Finding Unintended Behavior

 Dead logic due to “uint8” operation on incdec/holdrate*10

 Fix change the order of operation 10*incdec/holdrate

Condition can never be false
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Simulation Testing Workflow

Structural coverage 

report

Did we completely 

test our model?

Did we meet 

requirements?

Review functional 

behavior

Design

Requirements
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Did We Completely Test our Model?

Model Coverage 

Analysis

Potential causes of less 

than 100% coverage: 

 Missing requirements

 Over-specified design

 Design errors

 Missing tests
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Requirements Based Functional Testing with Coverage Analysis

 All 14 requirements based test cases pass

 By analyzing model coverage results we find:

– Missing test cases for vehicle speed exit conditions, and

– Missing requirements (and test cases) for “hold” or 

continuous speed button input
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Functional Testing with Added Requirements & Test Cases
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Functional Testing with Added Requirements & Test Cases

 Added 2 new requirements for the “hold” case for speed setting input buttons

 Added 5 test cases to the original 14 requirements based test cases 

– 3 test cases for the 2 new requirements

– 2 test cases for the missing test cases for the vehicle speed exist conditions

 4/5 new functional test cases pass

– Failed test case showed overshoot beyond target speed limits

– Coverage analysis highlighted transitions with design errors

– Fixed comparison operators, (<)  (<=), and (>)  (>=)

 Now all (19) functional test cases pass with 100% model coverage!
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Model Advisor – Model Standards Checking 
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Equivalence Testing: 

Model vs SIL or PIL Mode Testing

Model

Testing

SIL or PIL

Mode Testing

Coverage 100%
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Code Generation with Model-to-Code Traceability
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Code Generation with Model-to-Code Traceability
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Code Equivalence Check Results:

Model vs Code
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Code Equivalence Check Results:

Model vs Code
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Code Equivalence Check Results:

Model vs Code Code Coverage
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Code Equivalence Check Results:

Model vs Code Code Coverage

 Re-used full coverage test vectors and harnesses from Model Verification testing

 Ran test vectors on generated code using Model Reference SIL mode

 Equivalence test performed in Simulink Test, including test execution, evaluation 

and presentation of the results 

 Compared Model Coverage to Code Coverage using the SIL Code Coverage 

Report

 Successfully demonstrated code behavior matches model behavior!
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Finding Dead Code with Polyspace

Dead code

Maximum target speed = 90Target speed parameter 

propagated to “Cruise_ctrl.c” 

[0 … 40]
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Root Cause for Dead Code:  Speed Sensor Input Hand Code 

Changing analog-to-digital converter from 14 to 12-bit results in dead code

MASK – accounts for scaling 

down for new ADC from 14-bit to 

12-bit

CONV_FACTOR – accounts for 

translating sensor input counts to 

mph

Overlooked changing 

CONV_FACTOR for new ADC
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Polyspace Code Analysis

static void pointer_arithmetic (void) {

int array[100];

int *p = array;

int i;

for (i = 0; i < 100; i++) {

*p = 0;

p++;

}

if (get_bus_status() > 0) {

if (get_oil_pressure() > 0) {

*p = 5;

} else {

i++;

}

}

i = get_bus_status();

if (i >= 0) {

*(p - i) = 10;

}             

} 

Start with C/C++ source code
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Polyspace Code Analysis

static void pointer_arithmetic (void) {

int array[100];

int *p = array;

int i;

for (i = 0; i < 100; i++) {

*p = 0;

p++;

}

if (get_bus_status() > 0) {

if (get_oil_pressure() > 0) {

*p = 5;

} else {

i++;

}

}

i = get_bus_status();

if (i >= 0) {

*(p - i) = 10;

}             

} 

Source code painted in green, red, gray, orange 

Green: reliable
safe pointer access

Red: faulty
out of bounds error

Gray: dead
unreachable code

Orange: unproven
may be unsafe for some

conditions

Purple: violation
MISRA-C/C++ or JSF++

code rules

variable ‘I’ (int32): [0 .. 99]

assignment of ‘I’ (int32): [1 .. 100]

Range data
tool tip
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Conclusion: Model-Based Design Verification Workflow

Model Verification
Discover design errors at design time

Code Verification
Gain confidence in the generated code

Workflow approved by TÜV SÜD for development of safety-critical software in accordance with

ISO 26262 (automotive), IEC 61508 (industrial), EN 50128 (railway), IEC 62304 (medical devices)
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Conclusion

It is easier and less expensive to fix design errors 

early in the process when they happen.

Model-Based Design enables:

1. Early testing to increase confidence in your design

2. Delivery of higher quality software throughout the workflow
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Change the world by

Accelerating the pace
of discovery, innovation, development, and learning

in engineering and science


