Main Content

phased.PartitionedArray.viewArray

View array geometry

Description

example

viewArray(array) plots the geometry of the array specified in array.

viewArray(array,Name,Value) plots the geometry of the array, with additional options specified by one or more Name,Value pair arguments.

hndl = viewArray(___) returns the handles of the array elements in the figure window. All input arguments described for the previous syntaxes also apply here.

Examples

collapse all

Display the geometry of a uniform linear array having overlapped subarrays.

Create a 16-element ULA that has five 4-element subarrays. Some elements occur in more than one subarray.

h = phased.ULA(16);
ha = phased.PartitionedArray('Array',h,...
    'SubarraySelection',...
    [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...
    0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0;...
    0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...
    0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...
    0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Display the geometry of the array, highlighting all subarrays.

viewArray(ha);

Each color other than white represents a different subarray. White represents elements that occur in multiple subarrays.

Examine the overlapped subarrays by creating separate figures that highlight the first, second, and third subarrays. In each figure, dark blue represents the highlighted elements.

for idx = 1:3
    figure;
    viewArray(ha,'ShowSubarray',idx,...
        'Title',['Subarray #' num2str(idx)]);
end

Input Arguments

collapse all

Phased array, specified as a System object.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: ShowNormals = true,ShowIndex = 'All',ShowTaper = true

Handle to the axes along which the array geometry is displayed.

Option to show normal directions, specified as the comma-separated pair consisting of 'ShowNormals' and a logical value.

  • true — show the normal directions of all elements in the array

  • false — plot the elements without showing normal directions

Example: false

Data Types: logical

Logical flag specifying whether to show the local coordinate axes.

Data Types: logical

Logical flag specifying whether to show the annotations in the UI panel of the figure. Annotation shows aperture size and element spacing based on array axis of array.

Data Types: logical

Orientation of the array, specified as a 3-by-1 column vector containing the rotation angles with respect to the x-, y-, and z-axes of the local coordinate system, respectively. The default value is [0;0;0].

Data Types: double

Option to show taper magnitude, specified as the comma-separated pair consisting of 'ShowTaper' and a logical value.

  • true — change the element color brightness in proportion to the element taper magnitude

  • false — plot all elements using the same color

Example: true

Data Types: logical

Element indices to show in the figure, specified as the comma-separated pair consisting of 'ShowIndex' and a vector of positive integers. Each number in the vector must be an integer between 1 and the number of elements. To show all of indices of the array, specify 'All'. To suppress all indices, specify 'None'.

Example: [1,2,3]

Data Types: double

Vector specifying the indices of subarrays to highlight in the figure. Each number in the vector must be an integer between 1 and the number of subarrays. You can also specify the value 'All' to highlight all subarrays of the array or 'None' to suppress the subarray highlighting. The highlighting uses different colors for different subarrays, and white for elements that occur in multiple subarrays.

Data Types: double

Plot title, specified as a character vector.

Example: 'My array plot'

Data Types: char | string

Output Arguments

collapse all

Handle of array elements plot in the figure window, returned as a scalar.

Version History

Introduced in R2012a