Documentation

This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.

pol2circpol

Convert linear component representation of field to circular component representation

Syntax

Description

example

cfv = pol2circpol(fv) converts the linear polarization components of the field or fields contained in fv to their equivalent circular polarization components in cfv. The expression of a field in terms of a two-row vector of linear polarization components is called the Jones vector formalism.

Examples

collapse all

Express a 45° linear polarized field in terms of right-circular and left-circular components.

fv = [2;2]
cfv = pol2circpol(fv)
fv =

     2
     2


cfv =

   1.4142 - 1.4142i
   1.4142 + 1.4142i

Specify two input fields [1+1i;-1+1i] and [1;1] in the same matrix. The first field is a linear representation of a left-circularly polarized field and the second is a linearly polarized field.

fv=[1+1i 1;-1+1i 1]
cfv = pol2circpol(fv)
fv =

   1.0000 + 1.0000i   1.0000 + 0.0000i
  -1.0000 + 1.0000i   1.0000 + 0.0000i


cfv =

   1.4142 + 1.4142i   0.7071 - 0.7071i
   0.0000 + 0.0000i   0.7071 + 0.7071i

Input Arguments

collapse all

Field vector in its linear component representation specified as a 1-by-N complex row vector or a 2-by-N complex matrix. If fv is a matrix, each column in fv represents a field in the form of [Eh;Ev], where Eh and Ev are the field's horizontal and vertical polarization components. If fv is a vector, each entry in fv is assumed to contain the polarization ratio, Ev/Eh. For a row vector, the value Inf designates the case when the ratio is computed for a field with Eh = 0.

Example: [1;-i]

Example: 2 + pi/3*i

Data Types: double
Complex Number Support: Yes

Output Arguments

collapse all

Field vector in circular component representation returned as a 1-by-N complex-valued row vector or 2-by-Ncomplex-valued matrix. cfv has the same dimensions as fv. If fv is a matrix, each column of cfv contains the circular polarization components, [El;Er], of the field where El and Er are the left-circular and right-circular polarization components. If fv is a row vector, then cfv is also a row vector and each entry in cfv contains the circular polarization ratio, defined as Er/El.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp. 299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge University Press, 1999, pp 25–32.

Introduced in R2013a

Was this topic helpful?