shortest_distance( X, axis )
Compute The shortest distance(orthogonal distance) from a point to Ellipsoid or Hyperboloid
(x/a)^2+(y/b)^2+(z/c)^2=1 standart Ellipsoid equation centered at the origin
(x/a)^2+(y/b)^2-(z/c)^2=1 Standart Hyperboloid equation centered at the origin
Parameters:
* X, [x y z] - A point Cartesian coordinates data, n x 3 matrix or three n x 1 vectors
* axis,[a; b; c] - ellipsoid radii [a; b; c],its axes % along [x y z] axes
Output:
* Xo,[xo yo zo] - Cartesian coordinates of Point onto ellipsoid
* dis : shortest distance
negatif distance indicates that point PG remains in the ellipsoid
Author:
Sebahattin Bektas, 19 Mayis University, Samsun
sbektas@omu.edu.tr
How to cite this code:
BEKTAS, Sebahattin. Orthogonal distance from an ellipsoid. Bol. Ciênc. Geod. [online]. 2014, vol.20, n.4, pp. 970-983. ISSN 1982-2170.
BEKTAS, Sebahattin. Orthogonal (Shortest) Distance To the Hyperboloid,
International Journal of Research in Engineering and Applied Sciences(IJREAS)
Available online at http://euroasiapub.org/journals.php
Vol. 7 Issue 5, May-2017, pp. 37~45
ISSN (O): 2249-3905, ISSN(P): 2349-6525 |
Cite As
Sebahattin Bektas (2025). shortest_distance( X, axis ) (https://www.mathworks.com/matlabcentral/fileexchange/46261-shortest_distance-x-axis), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Mathematics and Optimization > Mapping Toolbox > Geometric Geodesy >
- Radar > Mapping Toolbox > Geometric Geodesy >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.5.0.0 | update
|
||
1.4.0.0 | figure added
|
||
1.3.0.0 | updated |
||
1.2.0.0 | revised |
||
1.1.0.0 | explain
|
||
1.0.0.0 |