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1. Introduction 

 
In these notes the operation and usage of the ANFIS library is described. This library consists 

of six different ANFIS models. 
The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a sophisticated hybrid network that 

belongs to the category of neuro-fuzzy neural networks. The main reference used to develop this 
library was the comprehensive text by J-S. R. Jang, C-T. Sun and E. Mizutani [1]. 

This library was implemented in MatLab and the six functions are Level-1 Simulink 
functions (S-functions). It was tested and run successfully in the environment of Simulink 5.0, 
R13 (MatLab 7.13.0.564 (R2011b)).  

The ANFIS system is already implemented in MatLab as a built-in function of the Fuzzy 
Logic Toolbox. This library provides the means to use ANFIS in Simulink and therefore, it is 
implemented to work in an “on-line” mode. 

 
2. Types of Various ANFIS Systems (Scatter, Grid, ART, MISO, MIMO) 
 

Six types of ANFIS systems were developed and comprise this library. The “Multiple-Inputs-
Single-Output” or MISO systems are simply labeled as “ANFIS” while the “Multiple-Inputs-
Multiple-Outputs” or MIMO systems are labeled as “CANFIS” ) (see Fig. 3) in agreement with 
terminology introduced in [1]. 

Each of these 2 groups comes in three flavors: the “Scatter”, the “Grid” and the “ART” types. 
This naming refers to the employed method of input space partitioning. The partitioning of the 
space of input variables affects directly the architecture, the operation and therefore the 
approximating capacity of each ANFIS/CANFIS system. 

In general, Grid-type input space partitioning is computationally greedy as the number of 
input variables (here signals) increases. In such a case, the number of fuzzy rules increases 
exponentially with the number of inputs as indicated by the relation: 

 
InputsN

TermsInputRules NN _=                                                     (1) 
 
This is just another occurrence of the widely known “curse of dimensionality”. To surpass this 
problem, we resort to the Scatter-type input space partitioning where the number of fuzzy rules 
equals the number of the fuzzy subsets of each input: 

 
TermsInputRules NN _= .                                                     (2) 

 
This trick saves the day in terms of required computational power, but reduces the 

approximating power of the ANFIS. This happens because this architecture does not partition the 
input space thoroughly but only along (or close to) the area that includes the main diagonal of the 
space spanned by the input variables. If data appear away from the main diagonal, it is very 



 

 

likely that the scatter type ANFIS model will not perform as well there. Detailed description of 
Input Space Partitioning techniques is found in 4.5.1 of [1]. 

A much smarter (and algorithmically more complex) way of input space partitioning is the 
application of the Fuzzy-ART (ART for Adaptive Resonance Theory) algorithm proposed by 
Carpenter et al. in 1991 [2]. The ART-type ANFIS model resembles the Scatter-type ANFIS 
model but it is much smarter in the clustering of input data. Being a well-known unsupervised 
learning technique, the fuzzy-ART algorithm creates input data categories (and therefore we 
allocate the net's membership functions there) exclusively on areas of the input space where data 
appear.    

 
3. The “Grid” and “Scatter” ANFIS/CANFIS Architectures 

 
3.1 ANFIS and CANFIS Networks 

 
The ANFIS system, as its name suggests, is an adaptive neuro-fuzzy inference machine. Like 

"pure" (i.e. non-fuzzy) artificial neural networks or classic fuzzy systems, it works as a universal 
approximator [1]. Its purpose is to approximate or “learn” simple or complicated mappings (i.e. 
nonlinear functions) from an input space (usually multivariate) to a univariate or multivariate 
output space. 

 

             
 

Fig. 1 "Scatter" Type ANFIS Network Architecture (adopted from [1]). 
 

 
Fig. 2 "Grid" Type ANFIS Network Architecture (adopted from [1]). 
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3.2 Description of ANFIS Operation 
 
The classic ANFIS (and CANFIS) consist of five layers (see Fig.1 and Fig.2). In the 

following lines we describe briefly the operation of each layer. For a full description please refer 
to [1]. 

 
Layer No.1 (Inputs Layer) 
 
In this layer input fuzzification takes place. This means that each input is assigned a 

membership value to each fuzzy subset that comprises that input’s universe of discourse. 
Mathematically, this function can be expressed as: 
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Where )1(

ijOut  is the layer 1 node’s output which corresponds to the j-th linguistic term of the 

i-th input variable )1(
iIn . As the default membership function for every ANFIS system in this 

library we have selected the generalized Gaussian function:  
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while the triplet of parameters (aij, bij, cij) are referred to as premise parameters or non-linear 
parameters and they adjust the shape and the location of the membership function. Those 
parameters are adjusted during the training mode of operation by the error back-propagation 
algorithm. Alternatively, here one may use the well-known bell-shaped membership function: 

 
2

2
1

)(









 −
−

= ij

iji cx

ij ex σµ , i = 1,..., NumInVars,  j = 1,..., NumInTerms.  (5) 
 

Layer No.2 (Fuzzy AND Operation) 
 
Each node in this layer performs a fuzzy-AND operation. For all ANFIS networks of the 

library, the T-norm operator of the algebraic product was selected. This results to each node’s 
output being the product of all of its inputs (every input term node that is connected to that rule 
node): 
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                                      k = 1,..., NumRules. 
 
The output of each node in this layer represents the firing strength (or activation value) of the 
corresponding fuzzy rule. 
 
 



 

 

Layer No.3 (Normalization) 
 

The output of the k-th node is the firing strength of each rule divided by the total sum of the 
activation values of all the fuzzy rules. This results in the normalization of the activation value 
for each fuzzy rule. This operation is simply written as: 
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Fig. 3 The ANFIS Library for Simulink. 
 

Layer No. 4 
 

Each node k in this layer is accompanied by a set of adjustable parameters 
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The weight kw  is the normalized activation value of the k-th rule, calculated by aid of (7). Those 
parameters are called consequent parameters or linear parameters of the ANFIS system and are 
adjusted by the RLS algorithm. 
 

Layer No.5 (Output Layer) 
 

For ANFIS (MISO) this layer consists of one and only node that creates the network’s output 
as the algebraic sum of the node’s inputs: 
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3.3 Description of CANFIS Operation 

 
The operation of CANFIS network is the same as that of ANFIS up to Layer 3. The MIMO 

CANFIS network architecture changes from Layer 4 and forward.  
 
Layer No.4 for CANFIS (MIMO)  
 
In such a system, the output of the k-th fuzzy rule that influences the m-th network output, is 

written as: 
 

)( 0
)1()1(

22
)1(

11
)4( m

kN
m

kN
m
k

m
kk

m
kkkm aInaInaInawfwOut

InputsInputs
++++==  ,        (10) 

                                         k = 1,..., NumRules,  m = 1,..., NumOutVars. 
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Inputs 021 ,,,,   are the consequent parameters of the CANFIS system 
that represent the contribution of the k-th rule to the m-th output. 
 

Layer No. 5 for CANFIS (MIMO)  
 

The m-th output of the network is computed as the algebraic sum of the m-th node’s inputs: 
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4. The Fuzzy-ART ANFIS and Fuzzy-ART CANFIS  Network Architectures 

 
The ANFIS-ART and CANFIS-ART networks consist of six layers. They are the “smarter” 

types of ANFIS/CANFIS networks included in this library because they employ 2 algorithms for 
parameter learning (i.e. RLS and error - backpropagation) and 1 algorithm for automatic 
structure learning (i.e. fuzzy-ART). In the following lines we describe briefly the operation of 
each layer. A descriptive representation of a 3-input ANFIS-ART network with 3-fuzzy rules is 
shown in Fig. 4. 



 

 

      The code segment that executes the Fuzzy-ART algorithm was adopted (with the necessary 
modifications) from the well-structured, reliable and tractable Fuzzy-ART codes developed by 
Aaron Garrett [4]. 
          

4.1 Description of ANFIS-ART Operation.  

Layer No.1 (Inputs Normalization Layer) 
 
The ANFIS-ART uses the technique of complement coding from fuzzy-ART [2] to normalize 

the input training data. Complement coding is a normalization process that replaces an n-
dimensional input vector ],,,[ 21 nxxx =x  with its 2n-dimensional complement coded form x' 
such that: 

 
]1,,,1,,1,[ 2211 nn xxxxxx −−−≡′ x                               (12) 

 
where xxx /],,,[ 21 ==nxxx  . As mentioned in [2], complement coding helps avoiding the 
problem of category proliferation when using fuzzy-ART for data clustering. Having this in 
mind, we can write the I/O function of the first layer as follows: 
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Layer No.2 (Input Fuzzification Layer) 
 
The nodes belonging to this layer are called input-term nodes and each represents a term of 

an input-linguistic variable and functions as an 1-D membership function. Here we use the 
following trapezoidal membership function: 
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ijυ are, the left-flat and right-flat points of the trapezoidal membership function 

of the j-th input-term node of the i-th input linguistic variable. )2(
ijIn is the input to the j-th input-
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The parameter γ regulates the fuzziness of the trapezoidal membership function. More details on 
how this membership function works on the real n-dimensional space combining n inputs, can be 
found in [3].   
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Fig. 4 ANFIS-ART Network Architecture. 
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Layer No.3 (Fuzzy-AND Operation) 
 
Each node in this layer performs a fuzzy-AND operation. Similarly to the other ANFIS 

networks of the library, the T-norm operator of the algebraic product was selected. This results 
each node’s output to be the product of all its inputs: 
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The output of each node in this layer represents the firing strength (or activation value) of the 
corresponding fuzzy rule. Note that the number of the fuzzy rules equals the number of input 
term nodes. The latter is common for all the input variables. Therefore, each fuzzy rule may be 
assigned an index k equal to the corresponding index j of the input term node, which is common 
for each input linguistic variable.  
 

Layer No.4 (Normalization of Each Rule Firing Strength) 
 

The output of the k-th node in this layer, is the firing strength of each rule divided by the total 
sum of the activation values of all the fuzzy rules. This results in the normalization of the 
activation values of all fuzzy rules:  
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Layer No. 5 

 
Each node k in this layer is accompanied by a set of adjustable parameters 

kkNkk aaaa
Inputs 021 ,,,,   and implements the linear function: 
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The weight kw  is the normalized activation value of the k-th rule calculated by aid of (17). 
Those parameters are called consequent parameters or linear parameters of the ANFIS system 
and are regulated by RLSE algorithm. 
 

Layer No.6 (Output Layer) 
 

For ANFIS-ART (MISO) this layer consists of one and only node that creates the network’s 
output as the algebraic sum of the node’s inputs: 
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4.2 Description of CANFIS-ART Operation.  

The operation of CANFIS-ART network is the same as that of ANFIS-ART up to Layer 4. 
The MIMO CANFIS-ART network architecture changes from Layer 5 and forward. 
 

Layer No.5 for CANFIS-ART (MIMO) 
 

In this network, the output of the k-th fuzzy rule that contributes to the m-th network output, 
is written as: 
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                k = 1, 2, ..., NumRules,  m = 1, 2, ..., NumOutVars. 
 
The parameters m
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Inputs 021 ,,,,   are the consequent parameters of the CANFIS-ART 
system that represent the contribution of the k-th rule to the m-th output. 
 

Layer No. 6 for CANFIS-ART (MIMO)  
 

The m-th output of the network is computed as the algebraic sum of the m-th node’s inputs: 
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5. Block Inputs, Outputs and Parameters 

 
One very nice thing about this library is that the inputs and the outputs for all the six blocks 

that consist this library, are identical. 
 
5.1 Inputs 
 
Input x: This is the entrance for the actual inputs to the (C)ANFIS system. If we want to supply 
the system with more than one input, then this must be a vector formed by aid of a multiplexer. 
 
Input e: This is where we supply the (C)ANFIS with the training error signal. This signal has the 
same dimensions as the output signal. Therefore and less surprisingly, for the MISO ANFIS it is 
just a scalar and for a CANFIS it’s a vector. 
 
Input LE: This is a two-state discrete, scalar Learning Enable (LE) input. As its name suggests, it 
enables (LE=1) or disables (LE=0) the learning of (C)ANFIS. When LE=1 the training of the 
network takes place while LE=0 switches training off and approximating operation based on 
experience gathered by previous training takes place.  
 
5.2 Outputs 
 
Output ys: This is the main output for each (C)ANFIS block. For ANFIS this is a scalar while for 
CANFIS it’s a vector. 
 



 

 

Output X: This output provides the parameters (or state) of the (C)ANFIS network during 
training in vector format in order to be saved for future use. It serves an important purpose since 
we would have to train the (C)ANFIS systems from scratch each time we started a new Simulink 
session. The save function is performed using the standard simulink sink block “To File”. There, 
we simply store successive values of X vector in a big matrix. When the time to store a new 
snapshot of X comes, the whole vector is added as a new column to the right-most column of the 
existing matrix. This “incremental” evolution of the ANFIS system parameters matrix allows for 
subsequent observation of every single parameter’s “personal history” by looking at the 
corresponding row of the matrix. Also, in the “To File” block parameters we can select the name 
of the .mat file where the snapshots of the X vector are going to be stored. We may also choose a 
more descriptive name for the big matrix that keeps all those vectors by providing for the 
“Variable Name” entry.  
 
5.3 ANFIS Block Parameters. 
 
Ita (η) : This is the “learning rate” constant used in the error back-propagation algorithm to adjust 
Layer 1 parameters. These are the parameters of the membership functions to the fuzzy subsets 
the input space is partitioned to. 
 
alpha (α): This is the “momentum term” constant that relates to the error back-propagation 
algorithm used to adjust the parameters of Layer 1. 
 
lambda (λ): This is the “forgetting factor” associated with the Recursive Least Squares (RLS) 
algorithm that is used to adjust the linear parameters of Layer 4. 
 
[NumInVars NumInTerms]: This self-explanatory 2-element vector contains the number of input 
signals (or variables) and the selected number of input linguistic terms. Therefore, the number of 
terms equals to the common number of fuzzy subsets each input is partitioned to. 
 
Inputs’ “Universe of Discourse” Start: MinsVector: This vector contains the maximum lower 
bound (MLB) for each input. Together with the next vector parameter, this vector of MLB values 
is used to determine the normal “universe of discourse” of the inputs in order to partition it in a 
uniform way. 

 
Inputs’ “Universe of Discourse” End: MaxsVector: This vector contains the minimum upper 
bound (MUB) for each input. This vector of MUB values together with the previous vector 
parameter, assume that the “universe of discourse” for each input is known a priori. 
 
Initial ANFIS States: Here one may choose between 2 possible values. When a 0 is entered, it 
initializes the ANFIS system to a “tabula rasa” state meaning that it knows nothing about the task 
it is meant to be used for and that it’s ready for initial training. On the other hand, if we enter the 
vector that corresponds to a column of the X output, saved to a .mat file from previous training, 
then the ANFIS is set to that state. This way we can “reload” to the system “experience” 
acquired through previous training.  
  
Sampling Time: This parameter sets the sampling time of the block. It should be set equal to the 
fundamental sample time of the model where it is used. 
 



 

 

5.4 CANFIS Block Parameters. 
 

All of the CANFIS parameters are the same and serve a similar purpose as those of ANFIS 
described above. The only difference is: 
 
[NumInVars NumInTerms NumOutVars]: This self-explanatory three-element vector parameter 
contains three numbers of great importance for the architecture of the CANFIS system. 
NumInVars is the number of Inputs (i.e. the size of x input vector). NumInTerms is the number 
of the selected number of input linguistic terms (same as in ANFIS). NumOutVars is the number 
of outputs that CANFIS has to track i.e. the dimension of ys

 output. 
 
5.5 ANFIS-ART and CANFIS-ART Block Parameters. 
 

These blocks have many common parameters with the non-ART ANFIS and CANFIS 
blocks. The parameters coming under the same labels and description, have an identical function 
and purpose as those described above. However, these 2 blocks have a number of unique 
parameters that should be set by the user and are attributed to the incorporation of the fuzzy-ART 
algorithm for input space partitioning. For details please refer to [2]. 
 
rho_a (ρα) : This is the "vigilance parameter" of the fuzzy-ART algorithm that serves the task of 
input space partitioning. By default, 0 < ρα < 1. The closer ρα is to zero, the bigger (coarser) the 
learned categories become. On the other hand, when ρα is set close to one, the categories become 
finer. For the exact description of the way the fuzzy-ART parameters influence the ART 
learning, please refer to [2]. 
 
Alpha (a): This is the "choice parameter" of the fuzzy-ART algorithm.  
 
Beta (β): This is the fuzzy-ART "learning rate" parameter. 
 
MF Inclination Factor (γ): This parameter sets the fuzziness of the trapezoidal membership 
functions that constitute the function of the input term nodes. A big γ (i.e. > 4) implies a crisper 
fuzzy set. A low γ gamma value (i.e. < 4) creates a fuzzier set.    
 
Max Num. of Input Variables Terms (== Max Num of Fuzzy Rules): This number sets the 
maximum number of input terms that will be generated by the fuzzy-ART algorithm. Due to the 
fact that the number of the input term nodes is equal to the number of fuzzy rules, this number 
also limits the number of maximum allowable fuzzy rules that will be generated. As explained 
thoroughly by the fuzzy-ART theory, the number of the generated categories for a given dataset 
is directly influenced by the "vigilance parameter" ρα. When the categories (or clusters) created 
on-line reaches this number, the creation of new categories stops. Only the adjustment of the 
Layer 2 parameters )2(

iju and )2(
ijυ by aid of error-backpropagation continues to happen (as long as 

LE=1).   
 
5.6 Block Parameter’s Typical Values. 
 
Ita (η) :  10-6 ≤ η ≤ 0.1, alpha (α): 0 ≤ α ≤ 10-4. 
  



 

 

lambda (λ):  1-10-3 ≤ λ ≤ 1. The RLS algorithm is very sensitive to this parameter. If set to a 
lower than 0.95 value, RLS may diverge and the whole simulation will crush spectacularly! 
  
[NumInVars NumInTerms NumOutVars]. 
 
NumInVars, NumOutVars : While theoretically “the sky is the limit” inputs should be limited to 
an “absolutely necessary” group of relevant inputs. If you increase the NumInVars to a value 
higher than 8 and you use the Grid version of the ANFIS systems, you will notice a considerable 
drop in execution speed. Up to 3 outputs were simultaneously tracked in my thesis experiments 
without any performance issues. 
 
NumInTerms:  2 ≤ NumInTerms ≤ 7. 
 
6. Demos 
 
6.1 Setting-Up the Workspace 
 

In order to help the future users of this library, several demo experiments have been 
developed and accompany the library models. There are 8 ANFIS and 3 CANFIS demos. Here 
we describe what each demo does and how you will make it runnable at your computer. 

Each demo contains a block that has to be double-clicked in order to generate, format and 
load the necessary data into the current workspace. A representative sample of this block is 
shown below: 

 

 
 
 
This block contains a small set of instructions that have to be modified slightly before and after 
the first time a demo is run. The user has to right-click on it, and select “Block Properties” -> 
Callbacks->OpenFcn. There, appears the small set of instructions that have to run before the 
simulation is ready to start. A typical set of these instructions are: 
 
clc;                   
clear;                 
SimDataGenAnfis1;      
load anfis_scatter.mat 
Ts = 1;   
 



 

 

The first 2 commands are known MatLab commands that clear the screen and the workspace. 
The command SimDataGenAnfis1 is a custom function that generates, formats and loads the 
input/output data pairs necessary for the training and checking sessions of the simulation. The 
next command: load anfis_scatter.mat is the most important since it loads the states of the 
ANFIS or CANFIS model used in each experiment. This command must be commented with a 
% symbol at the first time each demo is to be run because initially, no such data exist. The user 
has to train a network at least once in order for this .mat file to be generated. Therefore, the 
second time you want to run the demo (in order to check what ANFIS really learnt), you must 
uncomment this line. When this command is enabled, it loads a matrix variable in the workspace 
(e.g. anfis_scatter_states) which contains the states of the ANFIS network. You must enter the 
name of this variable at the dedicated entry of the ANFIS network’s mask titled: “Initial ANFIS 
States: [x0, d0]1”. By doing this, and by double-clicking the loading box the ANFIS/CANFIS will 
know from what initial conditions to start the next simulation. This mechanization is absolutely 
necessary because it allows the gained training experience to be stored and restored as desired 
without having to retrain the network from scratch each time we want to run a simulation.    
 
6.2 Demos Description  
 

As already stated, 2 families of demos come together with the ANFIS/CANFIS library. They 
are, the ANFIS demos and the CANFIS demos. In this section we provide a short description of 
each demo presented. 

6.2.1 ANFIS Demos 

- ANFIS_Scatter_MG.mdl 
 

In this demo we train an ANFIS/Scatter model on the prediction of the Mackey-Glass (MG) 
chaotic time series. The network takes as input the current and 3 past values of the MG time-
series [x(t-3) x(t-2) x(t-1) x(t)] and is trained to predict the value of the next one x(t+1). The 
simulation lasts for 1000 samples (or time instants) of which the first half is dedicated to training 
(LE=1) and the second half is dedicated to checking (LE=0). 
 

- ANFIS_Grid_MG.mdl 
 

Same as the previous one but using an ANFIS/Grid model to do the job. 
 

- ANFIS_ART_MG.mdl 
 

Similar to ANFIS_Scatter_MG.mdl but employing an ANFIS/ART model. Here, the total time 
of the simulation lasts 2000 samples (or time instants). Again, the first half is dedicated to 
training and the last half is dedicated to checking. 
 

- anfis_art_narmax.mdl 
 

                                                 
1 The user must insert a zero there at the very first time an ANFIS/CANFIS system is trained, to indicate that 
training starts from scratch.  



 

 

In this demo, a nonlinear single-input-single-output (SISO) NARMAX2 system is identified by 
use of an ANFIS/ART network. The simulation lasts 1000 time increments. During the first half 
of the simulation training is taking place while in the last half, the ANFIS/ART is checked for 
learning efficiency. The system accepts 4 inputs from the ARMA process [u(t-2) u(t-1) y(t-2) y(t-
1)] and is trained to estimate the value of the current output y(t). The closer the ANFIS/ART 
output is to the actual output the better the network has learnt the behavior of the NARMAX 
system. There is an error and a comparison scope for the user to inspect the progress of the 
ANFIS/ART learning. 
 

- bb_anfis_grid.mdl (requires the Fuzzy Logic Toolbox) 
 
This demo shows how an ANFIS/Grid network can be trained to successfully control the well- 
known “ball and beam system”. The framework of this demo was taken from a similar demo of 
the Fuzzy Logic Toolbox and it was modified to suit our purposes. Each simulation session 
(training or checking) lasts for 1000 seconds. In the training session, a four-input ANFIS/Grid is 
trained by the control law on the task of controlling the ball and beam system. During training, 
the manual switch must forward the output of the control law in order for the plant to be 
controlled. Also, the user must manually set the LE step input to 1 for this session. On the 
contrary, before starting the checking session and after loading the learnt ANFIS/Grid states, we 
should set the manual switch so as to forward the output of the ANFIS system and set the LE 
step input to 0. As described, training and checking require 2 distinct simulation runs and not one 
single run as happened in all the above demos.   
 

- bb_anfis_scatter.mdl (requires the Fuzzy Logic Toolbox) 
 
Quite similar to the above demo, this one demonstrates how an ANFIS/Scatter network can be 
trained to learn how to control the ball and beam system. 
 

- Adapt_Equalizer.mdl 
 
In this demo, an ANFIS/Grid system plays the role of an adaptive equalizer at the receiver of a 
rudimentary communications system. The transmitted bits are received by the equalizer after 
they have undergone distortion by a non-minimum phase channel and an additive noise source. 
The ANFIS/Grid equalizer takes 2 inputs as received from the channel [x(t-1) x(t)] and decides 
upon the correct value of the transmitted bit. The nature of the channel creates a non-linearly 
separable classification problem which the ANFIS solves successfully with minimal resource 
usage. For more details on this demo the interested reader is referred to chapter 19 of [1]. The 
demo lasts for 5000 samples of which only the first 1000 are dedicated to training. 
 

- slcp_anfis.mdl (requires the Fuzzy Logic Toolbox) 
 
Here, an ANFIS/Scatter net learns from a purely Fuzzy Logic controller how to control the cart 
and pole system. This demo is included in the Fuzzy logic toolbox and has been modified to 
demonstrate how an ANFIS system can successfully extract knowledge from an existing 
controller by simply exploiting its I/O data pairs for its own training. The ANFIS/Scatter shares 
common inputs with the fuzzy logic controller and learns how to generate an adequate control 
law for controlling the cart and pole system. Training and checking can only happen in distinct 
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simulations. During training the manual switch must forward to the cart and pole system the 
control signal generated by the controller whereas in the checking session it must forward the 
output signal of the ANFIS/Scatter. During training the LE input must be manually set to 1 while 
in the checking session this input must be manually set to 0. Also before checking starts, the 
“Initial ANFIS States [x0; d0;]” must be specified by inserting the name of the matrix variable 
that holds the initial states (i.e. x_anfis_states). 

6.2.2 CANFIS Demos 

- CANFIS_Scatter_Lorenz.mdl (requires the s-function sfunxyz.m3) 
 
In this demo, we teach a CANFIS/Scatter network the Lorenz chaotic system. This system is 
described by 3 ODE’’s which have been numerically solved beforehand and the resulting 
trajectory of the system has been stored in the lorenz_data.mat file. We feed the CANFIS/Scatter 
net with the current and previous points of the trajectory and we train the net to predict the next 
point. Therefore, the input vector of the ANFIS/Scatter network has the form: [x(t-1) y(t-1) z(t-1) 
x(t) y(t) z(t)] and the desired output is of the form [x(t+1) y(t+1) z(t+1)]. The simulation lasts for 
2000 samples. The first 600 samples suffice to train the ANFIS/Scatter system on the Lorenz 
attractor.   

 
- CANFIS_Grid_Lorenz.mdl (requires the s-function sfunxyz.m) 

 
This is similar to the above demo but employs a CANFIS/Grid system for the same task. 
 

- CANFIS_ART_Lorenz.mdl (requires the s-function sfunxyz.m) 
 
Same as CANFIS_Scatter_Lorenz.mdl demo but employs an CANFIS/ART system for learning 
the Lorenz chaotic 3D time series. 
 
 Depending on the Configuration Parameters of the Simulation, you may receive some 
warnings when running the described demos. Those are mainly caused because of the algebraic 
loop present at the generation of the error signal. You can safely ignore (or suppress them at the 
Configuration Parameters/Diagnostics menu) these warnings because Simulink successfully 
resolves the algebraic looping issue for us and selects the correct output sample for use. 
 
 
7. Backpropagation Implementation Verification 
 
7.1 Implementation Pitfalls 
 

Implementing the backpropagation algorithm for (C)ANFIS is not a simple task. Due to the 
complex nature of the neuro-fuzzy networks’ architectures you can hardly be 100% sure of the 
correctness of your implementation. You may even see a steadily decreasing mean squared 
(MSE) or instantaneous error e(n) and still have several tiny bugs “thriving” in some dark 
corners of your code. There is a simple but very efficient way to verify that your 

                                                 
3 Which can be downloaded from: http://www.mathworks.com/matlabcentral/fileexchange/3019-
airlib/content/Airlib/sfunxyz.m  

http://www.mathworks.com/matlabcentral/fileexchange/3019-airlib/content/Airlib/sfunxyz.m
http://www.mathworks.com/matlabcentral/fileexchange/3019-airlib/content/Airlib/sfunxyz.m


 

 

backpropagation implementation works 100% bug-free and it comes under the name: gradient 
checking.   
 
7.2 Gradient Checking 
 

Gradient checking is your ultimate weapon to become sure of the correctness of your 
backpropagation implementation. Remember that backpropagation is based on the steepest 
descent method4 for optimizing a network’s parameters. This means that all you need to check is 
how accurately the gradient of the error (or cost function J) wJ ∂∂ /  w.r.t. to every adjustable net 
parameter w is calculated by your implementation. The alternative way to calculate this quantity 
is by numerically computing it as described in the next lines. If the difference of the 2 gradient 
values is of the order 10-8 or less, you may stay assured that you backpropagation routine works 
like a Swiss-made clock.  
 
 
 
               J(w+ε) 
 
 
 
 
                  J(w) 
 
               J(w-ε) 
 
 
 
 
                 w-ε   w  w+ε 
 

Fig. 5 Numerical Approximation of Cost Function Gradient. 
 
 

Suppose that your neuro-fuzzy network optimizes a cost (or error) function J(w). This is 
a multivariate cost function having as independent variables the whole set of networks’ 
adjustable parameters grouped together in the vector w = [w1,w2,…,wi,…wn]. Assume that we 
desire to check how accurate is our backpropagation implementation on estimating the value of 
the gradient of J(w) w.r.t. parameter wi, i.e. in evaluating iwJ ∂∂ /)(w . The direct method of 
calculating the value of this partial derivative is given by the following formula: 
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Where ε is a small positive number: 10-4 or 10-5. This numerical value corresponds to the slope of 
the red line segment in Fig. 5. What becomes obvious in this figure is that as ε → 0, the slope of 

                                                 
4 For details about steepest descent method see Appendices B and C. 



 

 

the red chord tends to coincide with the slope of the green tangent line which is the true gradient 
of J(w) at wi. Therefore, if our backpropagation algorithm approximates this value at a 
satisfactory level (i.e. differs less that 10-8), we can be certain that it correctly calculates the 
gradient in question. As suggested by formula (22), the rest of the parameters play no significant 
role during this direct gradient approximation (remain constant).    
 
7.3 ANFIS/CANFIS Operational Assumptions 
 

It can be proved that (C)ANFIS satisfies the conditions of the Stone-Weirstrass theorem 
[1] and therefore it is classified as a universal approximator. This fact guarantees that it has 
unlimited approximation power for matching any nonlinear function arbitrarily well, when the 
number of fuzzy rules is unrestricted. 

However, in practice, (C)ANFIS will not solve all the approximation problems of this 
world. A basic and fundamental assumption that your data must satisfy is the existence of a 
continuous (or acceptably smooth) mapping f between the input and output data pairs. 
Furthermore, in order for the backpropagation to work in an acceptable manner, the partial 
derivatives of the error surface w.r.t. every single adjustable parameter should exist (i.e. remain 
finite).  
 
7.4 Warning! 
 

During the development of these S-functions no care at all was taken for input signals or 
parameter checking/validation. While it is well known that this is not a good programming 
practice, it is also assumed that the library user has a basic ANFIS background and has read these 
notes before attempting to use it.  
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Appendix A 
 
Number of ANFIS/CANFIS network parameters. 
 

ANFIS is a sophisticated fuzzy-neural network with powerful approximating capabilities. 
This level of performance comes at a considerable price. First of all, this hybrid net uses five 
consecutive layers and takes advantage of 2 (or 3) training algorithms (i.e. back-propagation, 
RLS and ART). All the experience gained during training is stored in 2 families of parameters. 
These are Layer’s 1 parameters (nonlinear or premise parameters) and Layer’s 4 parameters 
(linear or consequent parameters). As already stated, premise parameters are tuned via the 
standard error back-propagation algorithm (and ART) while the consequent parameters via the 
classic RLS algorithm. In the following sub-paragraphs I provide an account of these two big 
families of parameters. 
 
A.1 ANFIS Parameters 
 
NumInVars: Number of input variables (in simulink is the number of input signals). 
 
NumInTerms: Selected number of fuzzy subsets that “divide” the domain of each input. For 
example, imagine an experiment where we have a temperature input variable and divide the 
whole range of temp values in fuzzy subsets labeled with the following linguistic terms: “cold”, 
“cool”, “lukewarm”, “warm”, “hot”. Apparently, in such a case, NumInTerms = 5. This number 
is common for each input variable. 
 
NumRules: Number of fuzzy rules comprising the ANFIS inference engine. 
 
NumInTerms: Number of terms of the input linguistic variables. 
 
NumOutVars (or NOV): Number of output variables (or signals). For ANFIS is 1 and for   
       CANFIS >1. 
 
ns: Number of network’s states. Here is the sum of all the parameters. 
 
nds: Number of network’s differential states. This is the sum of all parameter gradient values                    

needed for error-backpropagation and RLS.   
 
A.1.1 "Scatter" Type 
 
NumRules = NumInTerms; 
             ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)* NumRules; 
           nds = 3*NumInVars*NumInTerms + (NumInVars+1)*NumRules; 
 
A.1.2 "Grid" Type 
 
NumRules = NumInTermsNumInVars; 
             ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)*NumRules; 
           nds = 3*NumInVars*NumInTerms; 
 
A.1.3 "ART" Type 
 



 

 

MaxNumRules = MaxNumInTerms; 
 ns = 2*NumInVars*MaxNumInTerms + [(NumInVars+1)*MaxNumRules]2 + (NumInVars+1)*MaxNumRules + 1; 
nds  = 2*NumInVars*MaxNumInTerms + (NumInVars+1)*MaxNumRules; 
 
A.2 CANFIS Parameters 
 
A.2.1 "Scatter" Type 
 
NumRules = NumInTerms; 
    ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)*NumRules*NumOutVars; 
  nds = 3*NumInVars*NumInTerms; 
 
A.2.2  "Grid" Type 
 
 NumRules = NumInTermsNumInVars; 
    ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)*NumRules*NumOutVars; 
  nds = 3*NumInVars*NumInTerms; 
 
A.2.3 "ART" Type 
 
MaxNumRules = MaxNumInTerms; 
ns  = 2*NumInVars*MaxNumInTerms + [(NumInVars+1)*MaxNumRules]2 + 
                                                      + (NumInVars+1)*MaxNumRules* NumOutVars + 1; 
nds = 2*NumInVars*MaxNumInTerms + (NumInVars+1)*MaxNumRules*NumOutVars; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Appendix B 
 
Derivation of Error Back-Propagation Algorithm for ANFIS and CANFIS (Scatter and 
Grid Types) 
 

The error back-propagation algorithm is employed in order to adjust the parameters of 
Layer 1 via the steepest descent method. Those premise parameters (also called nonlinear 
parameters) are updated at each iteration (i.e. after each input-output pair is received during 
training) in order to minimize the following instantaneous error function:  
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where )(nyd

m  is the desired output and )()5( nOutm  is the network's output. For each training data 
pair (inputs and outputs), the ANFIS operates in forward mode in order to calculate the current 
output )()5( nOutm . Afterwards, starting from the outputs layer, and moving backwards, the error 
back-propagation executes to calculate the derivatives wE ∂∂ /  for each node at every Layer of 
the network as indicated in the following. Assuming that w is an adjustable network parameter, 
(e.g. aj, bj or cj in (4)) then, this parameter is updated at each time step by the steepest descent 
method:  
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where η (0 < η < 1) is the learning rate of the nets parameters. In the following we note as )( j

iδ  
the error signal corresponding to the i-th node of the j-th layer. 
 
Layer 5 (Output) 
 
There is no parameter to adjust in this layer. We only have to calculate the error and back-
propagate it to layer 4: 
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Layer 4 
 
The consequent parameters in this layer are adjusted via the RLS algorithm. Therefore back-
propagation plays no adjustment role here. We only calculate the following quantity that is going 
to be used in the next layer: 
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Layer 3  
 
Similarly to layer 5, here we only have to calculate the error at each node of this layer5: 
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Taking into account eqs. (25) και (26) this can be simplified as: 
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From (10) by differentiation we get: 
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Layer 2  
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k1 ,k2 = 1, 2, ..., NumRules. 
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Layer 1 (Inputs) 
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and 
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For the premise parameters of the fuzzy rules the following hold: 
 









=

≠−
−=

∂

∂









=

≠−
−

−
=

∂

∂

−=
∂

∂

)1()1(

)1()1()1()1(
)1()1(

)1(

)1(

)1(

)1()1(

)1()1()1()1(
)1(

)1()1(

)1(

)1(

)1()1(
)1(

)1(

)1(

)1(

εάν0,

εάν),1(
2

εάν0,

εάν),1(ln2

)1(
2

iji

ijiijij
iji

ij

ij

ij

iji

ijiijij
ij

iji

ij

ij

ijij
ij

ij

ij

ij

cIn

cInOutOut
cIn

b

c
Out

cIn

cInOutOut
a

cIn

b
Out

OutOut
a
b

a
Out

                   (36) 

             i = 1, 2, ..., NumInVars      
                                   j = 1, 2, ..., NumInTerms. 
 
In case we employ the bell-shaped membership function (5) the corresponding relations are: 
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And finally: 
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             i = 1, 2, ..., NumInVars      
                                   j = 1, 2, ..., NumInTerms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Appendix C 
 
Derivation of Error Back-Propagation Algorithm for ANFIS-ART and CANFIS-ART 
 
The following derivation serves the adjustment of the Layer's 2 parameters )2(

ijυ  and )2(
iju  via the 

Error Back-Propagation Algorithm (EBPA), at each iteration in order to minimize the following 
instantaneous error function: 
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Layer 6 (Output) 
 
There is no parameter to adjust in this layer. We only have to calculate the error and back-
propagate it to layer 4: 
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Layer 5 
 
The consequent parameters in this layer are adjusted via the RLS algorithm. Therefore back-
propagation plays no adjustment role here. We only calculate the following quantity that is going 
to be used in the next layer: 
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Layer 4  
 
Similarly to layer 5, here we only have to calculate the error at each node of this layer: 
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Taking into account eqs. (25) και (26) this can be simplified as: 
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From (20) by differentiation we get: 
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Layer 3  
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and 
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k1 ,k2 = 1, 2, ..., NumRules. 
 
Layer 2  
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and 
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whereas 
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For the premise parameters of the fuzzy rules the following hold: 
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 And finally: 
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             i = 1, 2, ..., NumInVars      
                                   j = 1, 2, ..., NumInTerms. 
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