
Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Library for Simulink

Ilias S. Konsoulas
MSc, CEng, MIET

1. Introduction

In these notes the operation and usage of the ANFIS library is described. This library consists

of six different ANFIS models.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a sophisticated hybrid network that

belongs to the category of neuro-fuzzy neural networks. The main reference used to develop this
library was the comprehensive text by J-S. R. Jang, C-T. Sun and E. Mizutani [1].

This library was implemented in MatLab and the six functions are Level-1 Simulink
functions (S-functions). It was tested and run successfully in the environment of Simulink 5.0,
R13 (MatLab 7.13.0.564 (R2011b)).

The ANFIS system is already implemented in MatLab as a built-in function of the Fuzzy
Logic Toolbox. This library provides the means to use ANFIS in Simulink and therefore, it is
implemented to work in an “on-line” mode.

2. Types of Various ANFIS Systems (Scatter, Grid, ART, MISO, MIMO)

Six types of ANFIS systems were developed and comprise this library. The “Multiple-Inputs-
Single-Output” or MISO systems are simply labeled as “ANFIS” while the “Multiple-Inputs-
Multiple-Outputs” or MIMO systems are labeled as “CANFIS”) (see Fig. 3) in agreement with
terminology introduced in [1].

Each of these 2 groups comes in three flavors: the “Scatter”, the “Grid” and the “ART” types.
This naming refers to the employed method of input space partitioning. The partitioning of the
space of input variables affects directly the architecture, the operation and therefore the
approximating capacity of each ANFIS/CANFIS system.

In general, Grid-type input space partitioning is computationally greedy as the number of
input variables (here signals) increases. In such a case, the number of fuzzy rules increases
exponentially with the number of inputs as indicated by the relation:

InputsN

TermsInputRules NN _= (1)

This is just another occurrence of the widely known “curse of dimensionality”. To surpass this
problem, we resort to the Scatter-type input space partitioning where the number of fuzzy rules
equals the number of the fuzzy subsets of each input:

TermsInputRules NN _= . (2)

This trick saves the day in terms of required computational power, but reduces the

approximating power of the ANFIS. This happens because this architecture does not partition the
input space thoroughly but only along (or close to) the area that includes the main diagonal of the
space spanned by the input variables. If data appear away from the main diagonal, it is very

likely that the scatter type ANFIS model will not perform as well there. Detailed description of
Input Space Partitioning techniques is found in 4.5.1 of [1].

A much smarter (and algorithmically more complex) way of input space partitioning is the
application of the Fuzzy-ART (ART for Adaptive Resonance Theory) algorithm proposed by
Carpenter et al. in 1991 [2]. The ART-type ANFIS model resembles the Scatter-type ANFIS
model but it is much smarter in the clustering of input data. Being a well-known unsupervised
learning technique, the fuzzy-ART algorithm creates input data categories (and therefore we
allocate the net's membership functions there) exclusively on areas of the input space where data
appear.

3. The “Grid” and “Scatter” ANFIS/CANFIS Architectures

3.1 ANFIS and CANFIS Networks

The ANFIS system, as its name suggests, is an adaptive neuro-fuzzy inference machine. Like

"pure" (i.e. non-fuzzy) artificial neural networks or classic fuzzy systems, it works as a universal
approximator [1]. Its purpose is to approximate or “learn” simple or complicated mappings (i.e.
nonlinear functions) from an input space (usually multivariate) to a univariate or multivariate
output space.

Fig. 1 "Scatter" Type ANFIS Network Architecture (adopted from [1]).

Fig. 2 "Grid" Type ANFIS Network Architecture (adopted from [1]).

 Layer 1

 Layer 2 Layer 3

 Layer 4

 Layer 5
 1

 2
 3

 4

 5

3.2 Description of ANFIS Operation

The classic ANFIS (and CANFIS) consist of five layers (see Fig.1 and Fig.2). In the

following lines we describe briefly the operation of each layer. For a full description please refer
to [1].

Layer No.1 (Inputs Layer)

In this layer input fuzzification takes place. This means that each input is assigned a

membership value to each fuzzy subset that comprises that input’s universe of discourse.
Mathematically, this function can be expressed as:

)()1()1(

ijij InOut µ= . (3)

Where)1(

ijOut is the layer 1 node’s output which corresponds to the j-th linguistic term of the

i-th input variable)1(
iIn . As the default membership function for every ANFIS system in this

library we have selected the generalized Gaussian function:

ijb

ij

iji

ij

a
cx

x
−

+

=

1

1)(µ , i = 1,..., NumInVars, j = 1,..., NumInTerms. (4)

while the triplet of parameters (aij, bij, cij) are referred to as premise parameters or non-linear
parameters and they adjust the shape and the location of the membership function. Those
parameters are adjusted during the training mode of operation by the error back-propagation
algorithm. Alternatively, here one may use the well-known bell-shaped membership function:

2

2
1

)(









 −
−

= ij

iji cx

ij ex σµ , i = 1,..., NumInVars, j = 1,..., NumInTerms. (5)

Layer No.2 (Fuzzy AND Operation)

Each node in this layer performs a fuzzy-AND operation. For all ANFIS networks of the

library, the T-norm operator of the algebraic product was selected. This results to each node’s
output being the product of all of its inputs (every input term node that is connected to that rule
node):

node. ruleth - the toconnected nodes term theallfor ,
1

)1()2(kjOutwOut
InputsN

i
ijkk ∏

=

== (6)

 k = 1,..., NumRules.

The output of each node in this layer represents the firing strength (or activation value) of the
corresponding fuzzy rule.

Layer No.3 (Normalization)

The output of the k-th node is the firing strength of each rule divided by the total sum of the
activation values of all the fuzzy rules. This results in the normalization of the activation value
for each fuzzy rule. This operation is simply written as:

∑
=

==
RulesN

m
m

k
kk

Out

Out
wOut

1

)2(

)2(
)3(, k = 1,..., NumRules. (7)

Fig. 3 The ANFIS Library for Simulink.

Layer No. 4

Each node k in this layer is accompanied by a set of adjustable parameters
kkNkk aaaa

Inputs 021 ,,,,  and implements the linear function:

)(0
)1()1(

22
)1(

11
)4(

kNkNkkkkkk aInaInaInawfwOut
InputsInputs

++++==  . (8)
 k = 1,..., NumRules.

The weight kw is the normalized activation value of the k-th rule, calculated by aid of (7). Those
parameters are called consequent parameters or linear parameters of the ANFIS system and are
adjusted by the RLS algorithm.

Layer No.5 (Output Layer)

For ANFIS (MISO) this layer consists of one and only node that creates the network’s output
as the algebraic sum of the node’s inputs:

∑

∑
∑∑

=

=

==

===
Rules

Rules

RulesRules

N

k
k

N

k
kkN

k
kk

N

k
k

w

fw
fwOutOut

1

1

11

)4()5(. (9)

3.3 Description of CANFIS Operation

The operation of CANFIS network is the same as that of ANFIS up to Layer 3. The MIMO

CANFIS network architecture changes from Layer 4 and forward.

Layer No.4 for CANFIS (MIMO)

In such a system, the output of the k-th fuzzy rule that influences the m-th network output, is

written as:

)(0
)1()1(

22
)1(

11
)4(m

kN
m

kN
m
k

m
kk

m
kkkm aInaInaInawfwOut

InputsInputs
++++==  , (10)

 k = 1,..., NumRules, m = 1,..., NumOutVars.

The parameters m

k
m

kN
m
k

m
k aaaa

Inputs 021 ,,,,  are the consequent parameters of the CANFIS system
that represent the contribution of the k-th rule to the m-th output.

Layer No. 5 for CANFIS (MIMO)

The m-th output of the network is computed as the algebraic sum of the m-th node’s inputs:

∑∑
==

==
RulesRules N

k

m
kk

N

k
kmm fwOutOut

11

)4()5(, m = 1,..., NumOutVars. (11)

4. The Fuzzy-ART ANFIS and Fuzzy-ART CANFIS Network Architectures

The ANFIS-ART and CANFIS-ART networks consist of six layers. They are the “smarter”

types of ANFIS/CANFIS networks included in this library because they employ 2 algorithms for
parameter learning (i.e. RLS and error - backpropagation) and 1 algorithm for automatic
structure learning (i.e. fuzzy-ART). In the following lines we describe briefly the operation of
each layer. A descriptive representation of a 3-input ANFIS-ART network with 3-fuzzy rules is
shown in Fig. 4.

 The code segment that executes the Fuzzy-ART algorithm was adopted (with the necessary
modifications) from the well-structured, reliable and tractable Fuzzy-ART codes developed by
Aaron Garrett [4].

4.1 Description of ANFIS-ART Operation.

Layer No.1 (Inputs Normalization Layer)

The ANFIS-ART uses the technique of complement coding from fuzzy-ART [2] to normalize

the input training data. Complement coding is a normalization process that replaces an n-
dimensional input vector],,,[21 nxxx =x with its 2n-dimensional complement coded form x'
such that:

]1,,,1,,1,[2211 nn xxxxxx −−−≡′ x (12)

where xxx /],,,[21 ==nxxx  . As mentioned in [2], complement coding helps avoiding the
problem of category proliferation when using fuzzy-ART for data clustering. Having this in
mind, we can write the I/O function of the first layer as follows:

)1,()1()1()1(

iii InInOut −≡ , i = 1, 2, ..., NumInVars. (13)

Layer No.2 (Input Fuzzification Layer)

The nodes belonging to this layer are called input-term nodes and each represents a term of

an input-linguistic variable and functions as an 1-D membership function. Here we use the
following trapezoidal membership function:

),,(),(1)2()2()2()2()2(γγυ ijijijijij InugIngOut −−−−= i = 1, 2, ..., NumInVars (14)

where)2(

iju and)2(
ijυ are, the left-flat and right-flat points of the trapezoidal membership function

of the j-th input-term node of the i-th input linguistic variable.)2(
ijIn is the input to the j-th input-

term node from the i-th input linguistic variable (i.e.)1()2(
iij OutIn =). Also, the function g(.) is

defined as:









<
≤≤

>
=

.0if,0
10if,

1if,1
),(

γ
γγ

γ
γ

s
ss

s
sg (15)

The parameter γ regulates the fuzziness of the trapezoidal membership function. More details on
how this membership function works on the real n-dimensional space combining n inputs, can be
found in [3].

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
 Input Normalization Input Fuzzification Fuzzy-AND Fuzzy Rules Strength Rule Consequences Output Formation
(Complement Coding) Operation Normalization

 x� = [𝑥1��� 𝑥2��� 𝑥3���]
𝑥1 𝑥1���

 𝑤1����

 𝑤1����𝑓1�

𝑥2 𝑥2��� 𝑤2���� 𝑤2����𝑓2� 𝑂𝑢𝑡(6)

 𝑤3����𝑓3�
 𝑤3����

𝑥3 𝑥3���

Fig. 4 ANFIS-ART Network Architecture.

Ν

Ν

Σ

f1�

f2�

f3�

Π

Π

Π

Ν

Layer No.3 (Fuzzy-AND Operation)

Each node in this layer performs a fuzzy-AND operation. Similarly to the other ANFIS

networks of the library, the T-norm operator of the algebraic product was selected. This results
each node’s output to be the product of all its inputs:

∏
=

== ==
InputsN

i
ijjkjk OutwOut

1

)2()3(, k (= j) = 1,..., NumInTerms. (16)

The output of each node in this layer represents the firing strength (or activation value) of the
corresponding fuzzy rule. Note that the number of the fuzzy rules equals the number of input
term nodes. The latter is common for all the input variables. Therefore, each fuzzy rule may be
assigned an index k equal to the corresponding index j of the input term node, which is common
for each input linguistic variable.

Layer No.4 (Normalization of Each Rule Firing Strength)

The output of the k-th node in this layer, is the firing strength of each rule divided by the total
sum of the activation values of all the fuzzy rules. This results in the normalization of the
activation values of all fuzzy rules:

∑
=

==
RulesN

m
m

k
kk

Out

Out
wOut

1

)3(

)3(
)4(k (= j) = 1, 2, ..., NumRules. (17)

Layer No. 5

Each node k in this layer is accompanied by a set of adjustable parameters

kkNkk aaaa
Inputs 021 ,,,,  and implements the linear function:

)(0

)1()1(
22

)1(
11

)5(
kNkNkkkkkk aInaInaInawfwOut

InputsInputs
++++== 

 k = 1, 2, ..., NumRules. (18)

The weight kw is the normalized activation value of the k-th rule calculated by aid of (17).
Those parameters are called consequent parameters or linear parameters of the ANFIS system
and are regulated by RLSE algorithm.

Layer No.6 (Output Layer)

For ANFIS-ART (MISO) this layer consists of one and only node that creates the network’s
output as the algebraic sum of the node’s inputs:

∑

∑
∑∑

=

=

==

===
Rules

Rules

RulesRules

N

k
k

N

k
kkN

k
kk

N

k
k

w

fw
fwOutOut

1

1

11

)5()6(. (19)

4.2 Description of CANFIS-ART Operation.

The operation of CANFIS-ART network is the same as that of ANFIS-ART up to Layer 4.
The MIMO CANFIS-ART network architecture changes from Layer 5 and forward.

Layer No.5 for CANFIS-ART (MIMO)

In this network, the output of the k-th fuzzy rule that contributes to the m-th network output,
is written as:

)(0
)1()1(

22
)1(

11
)5(m

kN
m

kN
m
k

m
kk

m
kkkm aInaInaInawfwOut

InputsInputs
++++==  (20)

 k = 1, 2, ..., NumRules, m = 1, 2, ..., NumOutVars.

The parameters m

k
m

kN
m
k

m
k aaaa

Inputs 021 ,,,,  are the consequent parameters of the CANFIS-ART
system that represent the contribution of the k-th rule to the m-th output.

Layer No. 6 for CANFIS-ART (MIMO)

The m-th output of the network is computed as the algebraic sum of the m-th node’s inputs:

∑∑
==

==
RulesRules N

k

m
kk

N

k
kmm fwOutOut

11

)5()6(, m = 1,..., NumOutVars. (21)

5. Block Inputs, Outputs and Parameters

One very nice thing about this library is that the inputs and the outputs for all the six blocks

that consist this library, are identical.

5.1 Inputs

Input x: This is the entrance for the actual inputs to the (C)ANFIS system. If we want to supply
the system with more than one input, then this must be a vector formed by aid of a multiplexer.

Input e: This is where we supply the (C)ANFIS with the training error signal. This signal has the
same dimensions as the output signal. Therefore and less surprisingly, for the MISO ANFIS it is
just a scalar and for a CANFIS it’s a vector.

Input LE: This is a two-state discrete, scalar Learning Enable (LE) input. As its name suggests, it
enables (LE=1) or disables (LE=0) the learning of (C)ANFIS. When LE=1 the training of the
network takes place while LE=0 switches training off and approximating operation based on
experience gathered by previous training takes place.

5.2 Outputs

Output ys: This is the main output for each (C)ANFIS block. For ANFIS this is a scalar while for
CANFIS it’s a vector.

Output X: This output provides the parameters (or state) of the (C)ANFIS network during
training in vector format in order to be saved for future use. It serves an important purpose since
we would have to train the (C)ANFIS systems from scratch each time we started a new Simulink
session. The save function is performed using the standard simulink sink block “To File”. There,
we simply store successive values of X vector in a big matrix. When the time to store a new
snapshot of X comes, the whole vector is added as a new column to the right-most column of the
existing matrix. This “incremental” evolution of the ANFIS system parameters matrix allows for
subsequent observation of every single parameter’s “personal history” by looking at the
corresponding row of the matrix. Also, in the “To File” block parameters we can select the name
of the .mat file where the snapshots of the X vector are going to be stored. We may also choose a
more descriptive name for the big matrix that keeps all those vectors by providing for the
“Variable Name” entry.

5.3 ANFIS Block Parameters.

Ita (η) : This is the “learning rate” constant used in the error back-propagation algorithm to adjust
Layer 1 parameters. These are the parameters of the membership functions to the fuzzy subsets
the input space is partitioned to.

alpha (α): This is the “momentum term” constant that relates to the error back-propagation
algorithm used to adjust the parameters of Layer 1.

lambda (λ): This is the “forgetting factor” associated with the Recursive Least Squares (RLS)
algorithm that is used to adjust the linear parameters of Layer 4.

[NumInVars NumInTerms]: This self-explanatory 2-element vector contains the number of input
signals (or variables) and the selected number of input linguistic terms. Therefore, the number of
terms equals to the common number of fuzzy subsets each input is partitioned to.

Inputs’ “Universe of Discourse” Start: MinsVector: This vector contains the maximum lower
bound (MLB) for each input. Together with the next vector parameter, this vector of MLB values
is used to determine the normal “universe of discourse” of the inputs in order to partition it in a
uniform way.

Inputs’ “Universe of Discourse” End: MaxsVector: This vector contains the minimum upper
bound (MUB) for each input. This vector of MUB values together with the previous vector
parameter, assume that the “universe of discourse” for each input is known a priori.

Initial ANFIS States: Here one may choose between 2 possible values. When a 0 is entered, it
initializes the ANFIS system to a “tabula rasa” state meaning that it knows nothing about the task
it is meant to be used for and that it’s ready for initial training. On the other hand, if we enter the
vector that corresponds to a column of the X output, saved to a .mat file from previous training,
then the ANFIS is set to that state. This way we can “reload” to the system “experience”
acquired through previous training.

Sampling Time: This parameter sets the sampling time of the block. It should be set equal to the
fundamental sample time of the model where it is used.

5.4 CANFIS Block Parameters.

All of the CANFIS parameters are the same and serve a similar purpose as those of ANFIS
described above. The only difference is:

[NumInVars NumInTerms NumOutVars]: This self-explanatory three-element vector parameter
contains three numbers of great importance for the architecture of the CANFIS system.
NumInVars is the number of Inputs (i.e. the size of x input vector). NumInTerms is the number
of the selected number of input linguistic terms (same as in ANFIS). NumOutVars is the number
of outputs that CANFIS has to track i.e. the dimension of ys

 output.

5.5 ANFIS-ART and CANFIS-ART Block Parameters.

These blocks have many common parameters with the non-ART ANFIS and CANFIS
blocks. The parameters coming under the same labels and description, have an identical function
and purpose as those described above. However, these 2 blocks have a number of unique
parameters that should be set by the user and are attributed to the incorporation of the fuzzy-ART
algorithm for input space partitioning. For details please refer to [2].

rho_a (ρα) : This is the "vigilance parameter" of the fuzzy-ART algorithm that serves the task of
input space partitioning. By default, 0 < ρα < 1. The closer ρα is to zero, the bigger (coarser) the
learned categories become. On the other hand, when ρα is set close to one, the categories become
finer. For the exact description of the way the fuzzy-ART parameters influence the ART
learning, please refer to [2].

Alpha (a): This is the "choice parameter" of the fuzzy-ART algorithm.

Beta (β): This is the fuzzy-ART "learning rate" parameter.

MF Inclination Factor (γ): This parameter sets the fuzziness of the trapezoidal membership
functions that constitute the function of the input term nodes. A big γ (i.e. > 4) implies a crisper
fuzzy set. A low γ gamma value (i.e. < 4) creates a fuzzier set.

Max Num. of Input Variables Terms (== Max Num of Fuzzy Rules): This number sets the
maximum number of input terms that will be generated by the fuzzy-ART algorithm. Due to the
fact that the number of the input term nodes is equal to the number of fuzzy rules, this number
also limits the number of maximum allowable fuzzy rules that will be generated. As explained
thoroughly by the fuzzy-ART theory, the number of the generated categories for a given dataset
is directly influenced by the "vigilance parameter" ρα. When the categories (or clusters) created
on-line reaches this number, the creation of new categories stops. Only the adjustment of the
Layer 2 parameters)2(

iju and)2(
ijυ by aid of error-backpropagation continues to happen (as long as

LE=1).

5.6 Block Parameter’s Typical Values.

Ita (η) : 10-6 ≤ η ≤ 0.1, alpha (α): 0 ≤ α ≤ 10-4.

lambda (λ): 1-10-3 ≤ λ ≤ 1. The RLS algorithm is very sensitive to this parameter. If set to a
lower than 0.95 value, RLS may diverge and the whole simulation will crush spectacularly!

[NumInVars NumInTerms NumOutVars].

NumInVars, NumOutVars : While theoretically “the sky is the limit” inputs should be limited to
an “absolutely necessary” group of relevant inputs. If you increase the NumInVars to a value
higher than 8 and you use the Grid version of the ANFIS systems, you will notice a considerable
drop in execution speed. Up to 3 outputs were simultaneously tracked in my thesis experiments
without any performance issues.

NumInTerms: 2 ≤ NumInTerms ≤ 7.

6. Demos

6.1 Setting-Up the Workspace

In order to help the future users of this library, several demo experiments have been
developed and accompany the library models. There are 8 ANFIS and 3 CANFIS demos. Here
we describe what each demo does and how you will make it runnable at your computer.

Each demo contains a block that has to be double-clicked in order to generate, format and
load the necessary data into the current workspace. A representative sample of this block is
shown below:

This block contains a small set of instructions that have to be modified slightly before and after
the first time a demo is run. The user has to right-click on it, and select “Block Properties” ->
Callbacks->OpenFcn. There, appears the small set of instructions that have to run before the
simulation is ready to start. A typical set of these instructions are:

clc;
clear;
SimDataGenAnfis1;
load anfis_scatter.mat
Ts = 1;

The first 2 commands are known MatLab commands that clear the screen and the workspace.
The command SimDataGenAnfis1 is a custom function that generates, formats and loads the
input/output data pairs necessary for the training and checking sessions of the simulation. The
next command: load anfis_scatter.mat is the most important since it loads the states of the
ANFIS or CANFIS model used in each experiment. This command must be commented with a
% symbol at the first time each demo is to be run because initially, no such data exist. The user
has to train a network at least once in order for this .mat file to be generated. Therefore, the
second time you want to run the demo (in order to check what ANFIS really learnt), you must
uncomment this line. When this command is enabled, it loads a matrix variable in the workspace
(e.g. anfis_scatter_states) which contains the states of the ANFIS network. You must enter the
name of this variable at the dedicated entry of the ANFIS network’s mask titled: “Initial ANFIS
States: [x0, d0]1”. By doing this, and by double-clicking the loading box the ANFIS/CANFIS will
know from what initial conditions to start the next simulation. This mechanization is absolutely
necessary because it allows the gained training experience to be stored and restored as desired
without having to retrain the network from scratch each time we want to run a simulation.

6.2 Demos Description

As already stated, 2 families of demos come together with the ANFIS/CANFIS library. They
are, the ANFIS demos and the CANFIS demos. In this section we provide a short description of
each demo presented.

6.2.1 ANFIS Demos

- ANFIS_Scatter_MG.mdl

In this demo we train an ANFIS/Scatter model on the prediction of the Mackey-Glass (MG)
chaotic time series. The network takes as input the current and 3 past values of the MG time-
series [x(t-3) x(t-2) x(t-1) x(t)] and is trained to predict the value of the next one x(t+1). The
simulation lasts for 1000 samples (or time instants) of which the first half is dedicated to training
(LE=1) and the second half is dedicated to checking (LE=0).

- ANFIS_Grid_MG.mdl

Same as the previous one but using an ANFIS/Grid model to do the job.

- ANFIS_ART_MG.mdl

Similar to ANFIS_Scatter_MG.mdl but employing an ANFIS/ART model. Here, the total time
of the simulation lasts 2000 samples (or time instants). Again, the first half is dedicated to
training and the last half is dedicated to checking.

- anfis_art_narmax.mdl

1 The user must insert a zero there at the very first time an ANFIS/CANFIS system is trained, to indicate that
training starts from scratch.

In this demo, a nonlinear single-input-single-output (SISO) NARMAX2 system is identified by
use of an ANFIS/ART network. The simulation lasts 1000 time increments. During the first half
of the simulation training is taking place while in the last half, the ANFIS/ART is checked for
learning efficiency. The system accepts 4 inputs from the ARMA process [u(t-2) u(t-1) y(t-2) y(t-
1)] and is trained to estimate the value of the current output y(t). The closer the ANFIS/ART
output is to the actual output the better the network has learnt the behavior of the NARMAX
system. There is an error and a comparison scope for the user to inspect the progress of the
ANFIS/ART learning.

- bb_anfis_grid.mdl (requires the Fuzzy Logic Toolbox)

This demo shows how an ANFIS/Grid network can be trained to successfully control the well-
known “ball and beam system”. The framework of this demo was taken from a similar demo of
the Fuzzy Logic Toolbox and it was modified to suit our purposes. Each simulation session
(training or checking) lasts for 1000 seconds. In the training session, a four-input ANFIS/Grid is
trained by the control law on the task of controlling the ball and beam system. During training,
the manual switch must forward the output of the control law in order for the plant to be
controlled. Also, the user must manually set the LE step input to 1 for this session. On the
contrary, before starting the checking session and after loading the learnt ANFIS/Grid states, we
should set the manual switch so as to forward the output of the ANFIS system and set the LE
step input to 0. As described, training and checking require 2 distinct simulation runs and not one
single run as happened in all the above demos.

- bb_anfis_scatter.mdl (requires the Fuzzy Logic Toolbox)

Quite similar to the above demo, this one demonstrates how an ANFIS/Scatter network can be
trained to learn how to control the ball and beam system.

- Adapt_Equalizer.mdl

In this demo, an ANFIS/Grid system plays the role of an adaptive equalizer at the receiver of a
rudimentary communications system. The transmitted bits are received by the equalizer after
they have undergone distortion by a non-minimum phase channel and an additive noise source.
The ANFIS/Grid equalizer takes 2 inputs as received from the channel [x(t-1) x(t)] and decides
upon the correct value of the transmitted bit. The nature of the channel creates a non-linearly
separable classification problem which the ANFIS solves successfully with minimal resource
usage. For more details on this demo the interested reader is referred to chapter 19 of [1]. The
demo lasts for 5000 samples of which only the first 1000 are dedicated to training.

- slcp_anfis.mdl (requires the Fuzzy Logic Toolbox)

Here, an ANFIS/Scatter net learns from a purely Fuzzy Logic controller how to control the cart
and pole system. This demo is included in the Fuzzy logic toolbox and has been modified to
demonstrate how an ANFIS system can successfully extract knowledge from an existing
controller by simply exploiting its I/O data pairs for its own training. The ANFIS/Scatter shares
common inputs with the fuzzy logic controller and learns how to generate an adequate control
law for controlling the cart and pole system. Training and checking can only happen in distinct

2 Non-linear Auto-Regressive Moving Average with eXogenous Inputs System.

simulations. During training the manual switch must forward to the cart and pole system the
control signal generated by the controller whereas in the checking session it must forward the
output signal of the ANFIS/Scatter. During training the LE input must be manually set to 1 while
in the checking session this input must be manually set to 0. Also before checking starts, the
“Initial ANFIS States [x0; d0;]” must be specified by inserting the name of the matrix variable
that holds the initial states (i.e. x_anfis_states).

6.2.2 CANFIS Demos

- CANFIS_Scatter_Lorenz.mdl (requires the s-function sfunxyz.m3)

In this demo, we teach a CANFIS/Scatter network the Lorenz chaotic system. This system is
described by 3 ODE’’s which have been numerically solved beforehand and the resulting
trajectory of the system has been stored in the lorenz_data.mat file. We feed the CANFIS/Scatter
net with the current and previous points of the trajectory and we train the net to predict the next
point. Therefore, the input vector of the ANFIS/Scatter network has the form: [x(t-1) y(t-1) z(t-1)
x(t) y(t) z(t)] and the desired output is of the form [x(t+1) y(t+1) z(t+1)]. The simulation lasts for
2000 samples. The first 600 samples suffice to train the ANFIS/Scatter system on the Lorenz
attractor.

- CANFIS_Grid_Lorenz.mdl (requires the s-function sfunxyz.m)

This is similar to the above demo but employs a CANFIS/Grid system for the same task.

- CANFIS_ART_Lorenz.mdl (requires the s-function sfunxyz.m)

Same as CANFIS_Scatter_Lorenz.mdl demo but employs an CANFIS/ART system for learning
the Lorenz chaotic 3D time series.

 Depending on the Configuration Parameters of the Simulation, you may receive some
warnings when running the described demos. Those are mainly caused because of the algebraic
loop present at the generation of the error signal. You can safely ignore (or suppress them at the
Configuration Parameters/Diagnostics menu) these warnings because Simulink successfully
resolves the algebraic looping issue for us and selects the correct output sample for use.

7. Backpropagation Implementation Verification

7.1 Implementation Pitfalls

Implementing the backpropagation algorithm for (C)ANFIS is not a simple task. Due to the
complex nature of the neuro-fuzzy networks’ architectures you can hardly be 100% sure of the
correctness of your implementation. You may even see a steadily decreasing mean squared
(MSE) or instantaneous error e(n) and still have several tiny bugs “thriving” in some dark
corners of your code. There is a simple but very efficient way to verify that your

3 Which can be downloaded from: http://www.mathworks.com/matlabcentral/fileexchange/3019-
airlib/content/Airlib/sfunxyz.m

http://www.mathworks.com/matlabcentral/fileexchange/3019-airlib/content/Airlib/sfunxyz.m
http://www.mathworks.com/matlabcentral/fileexchange/3019-airlib/content/Airlib/sfunxyz.m

backpropagation implementation works 100% bug-free and it comes under the name: gradient
checking.

7.2 Gradient Checking

Gradient checking is your ultimate weapon to become sure of the correctness of your
backpropagation implementation. Remember that backpropagation is based on the steepest
descent method4 for optimizing a network’s parameters. This means that all you need to check is
how accurately the gradient of the error (or cost function J) wJ ∂∂ / w.r.t. to every adjustable net
parameter w is calculated by your implementation. The alternative way to calculate this quantity
is by numerically computing it as described in the next lines. If the difference of the 2 gradient
values is of the order 10-8 or less, you may stay assured that you backpropagation routine works
like a Swiss-made clock.

 J(w+ε)

 J(w)

 J(w-ε)

 w-ε w w+ε

Fig. 5 Numerical Approximation of Cost Function Gradient.

Suppose that your neuro-fuzzy network optimizes a cost (or error) function J(w). This is
a multivariate cost function having as independent variables the whole set of networks’
adjustable parameters grouped together in the vector w = [w1,w2,…,wi,…wn]. Assume that we
desire to check how accurate is our backpropagation implementation on estimating the value of
the gradient of J(w) w.r.t. parameter wi, i.e. in evaluating iwJ ∂∂ /)(w . The direct method of
calculating the value of this partial derivative is given by the following formula:

ε
εε

2
),...,,...,,(),...,,...,,(),...,,...,,()(212121 nini

i

ni

i

wwwwJwwwwJ
w

wwwwJ
w

J −−+
≈

∂
∂

=
∂

∂ w

(22)

Where ε is a small positive number: 10-4 or 10-5. This numerical value corresponds to the slope of
the red line segment in Fig. 5. What becomes obvious in this figure is that as ε → 0, the slope of

4 For details about steepest descent method see Appendices B and C.

the red chord tends to coincide with the slope of the green tangent line which is the true gradient
of J(w) at wi. Therefore, if our backpropagation algorithm approximates this value at a
satisfactory level (i.e. differs less that 10-8), we can be certain that it correctly calculates the
gradient in question. As suggested by formula (22), the rest of the parameters play no significant
role during this direct gradient approximation (remain constant).

7.3 ANFIS/CANFIS Operational Assumptions

It can be proved that (C)ANFIS satisfies the conditions of the Stone-Weirstrass theorem
[1] and therefore it is classified as a universal approximator. This fact guarantees that it has
unlimited approximation power for matching any nonlinear function arbitrarily well, when the
number of fuzzy rules is unrestricted.

However, in practice, (C)ANFIS will not solve all the approximation problems of this
world. A basic and fundamental assumption that your data must satisfy is the existence of a
continuous (or acceptably smooth) mapping f between the input and output data pairs.
Furthermore, in order for the backpropagation to work in an acceptable manner, the partial
derivatives of the error surface w.r.t. every single adjustable parameter should exist (i.e. remain
finite).

7.4 Warning!

During the development of these S-functions no care at all was taken for input signals or
parameter checking/validation. While it is well known that this is not a good programming
practice, it is also assumed that the library user has a basic ANFIS background and has read these
notes before attempting to use it.

Acknowledgements

I would like to express my deep appreciation and thankfulness to Dr. Giampiero Campa for
his enormous help on coding this library of S-functions. Without his generous contribution this
small library wouldn’t become a reality.

Also, I would like here to thank Mr. Aaron Garrett for the successful coding of the fuzzy-
ART and fuzzy ARTMAP algorithms and sharing them with the MatLab users community.

Appendix A

Number of ANFIS/CANFIS network parameters.

ANFIS is a sophisticated fuzzy-neural network with powerful approximating capabilities.
This level of performance comes at a considerable price. First of all, this hybrid net uses five
consecutive layers and takes advantage of 2 (or 3) training algorithms (i.e. back-propagation,
RLS and ART). All the experience gained during training is stored in 2 families of parameters.
These are Layer’s 1 parameters (nonlinear or premise parameters) and Layer’s 4 parameters
(linear or consequent parameters). As already stated, premise parameters are tuned via the
standard error back-propagation algorithm (and ART) while the consequent parameters via the
classic RLS algorithm. In the following sub-paragraphs I provide an account of these two big
families of parameters.

A.1 ANFIS Parameters

NumInVars: Number of input variables (in simulink is the number of input signals).

NumInTerms: Selected number of fuzzy subsets that “divide” the domain of each input. For
example, imagine an experiment where we have a temperature input variable and divide the
whole range of temp values in fuzzy subsets labeled with the following linguistic terms: “cold”,
“cool”, “lukewarm”, “warm”, “hot”. Apparently, in such a case, NumInTerms = 5. This number
is common for each input variable.

NumRules: Number of fuzzy rules comprising the ANFIS inference engine.

NumInTerms: Number of terms of the input linguistic variables.

NumOutVars (or NOV): Number of output variables (or signals). For ANFIS is 1 and for
 CANFIS >1.

ns: Number of network’s states. Here is the sum of all the parameters.

nds: Number of network’s differential states. This is the sum of all parameter gradient values

needed for error-backpropagation and RLS.

A.1.1 "Scatter" Type

NumRules = NumInTerms;
 ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)* NumRules;
 nds = 3*NumInVars*NumInTerms + (NumInVars+1)*NumRules;

A.1.2 "Grid" Type

NumRules = NumInTermsNumInVars;
 ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)*NumRules;
 nds = 3*NumInVars*NumInTerms;

A.1.3 "ART" Type

MaxNumRules = MaxNumInTerms;
 ns = 2*NumInVars*MaxNumInTerms + [(NumInVars+1)*MaxNumRules]2 + (NumInVars+1)*MaxNumRules + 1;
nds = 2*NumInVars*MaxNumInTerms + (NumInVars+1)*MaxNumRules;

A.2 CANFIS Parameters

A.2.1 "Scatter" Type

NumRules = NumInTerms;
 ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)*NumRules*NumOutVars;
 nds = 3*NumInVars*NumInTerms;

A.2.2 "Grid" Type

 NumRules = NumInTermsNumInVars;
 ns = 3*NumInVars*NumInTerms + [(NumInVars+1)*NumRules]2 + (NumInVars+1)*NumRules*NumOutVars;
 nds = 3*NumInVars*NumInTerms;

A.2.3 "ART" Type

MaxNumRules = MaxNumInTerms;
ns = 2*NumInVars*MaxNumInTerms + [(NumInVars+1)*MaxNumRules]2 +
 + (NumInVars+1)*MaxNumRules* NumOutVars + 1;
nds = 2*NumInVars*MaxNumInTerms + (NumInVars+1)*MaxNumRules*NumOutVars;

Appendix B

Derivation of Error Back-Propagation Algorithm for ANFIS and CANFIS (Scatter and
Grid Types)

The error back-propagation algorithm is employed in order to adjust the parameters of
Layer 1 via the steepest descent method. Those premise parameters (also called nonlinear
parameters) are updated at each iteration (i.e. after each input-output pair is received during
training) in order to minimize the following instantaneous error function:

2)5(

1

)]()([
2
1)(where

,)()(

nOutnynE

nEnE

m
d
mm

NOV

m
m

−=

= ∑
= m = 1,..., NumOutVars. (23)

where)(nyd

m is the desired output and)()5(nOutm is the network's output. For each training data
pair (inputs and outputs), the ANFIS operates in forward mode in order to calculate the current
output)()5(nOutm . Afterwards, starting from the outputs layer, and moving backwards, the error
back-propagation executes to calculate the derivatives wE ∂∂ / for each node at every Layer of
the network as indicated in the following. Assuming that w is an adjustable network parameter,
(e.g. aj, bj or cj in (4)) then, this parameter is updated at each time step by the steepest descent
method:

w
Ew
∂
∂

−∝∆ (24)

and









∂
∂

−+=+
w
Enwnw η)()1(. (25)

where η (0 < η < 1) is the learning rate of the nets parameters. In the following we note as)(j

iδ
the error signal corresponding to the i-th node of the j-th layer.

Layer 5 (Output)

There is no parameter to adjust in this layer. We only have to calculate the error and back-
propagate it to layer 4:

)()(
)(

)()5(
)5(

)5(nOutny
nOut

nE
m

d
m

m
m −=

∂
∂

−=δ , m = 1,..., NumOutVars. (26)

Layer 4

The consequent parameters in this layer are adjusted via the RLS algorithm. Therefore back-
propagation plays no adjustment role here. We only calculate the following quantity that is going
to be used in the next layer:

k
Out
Out

km

m ∀=
∂
∂ ,1)4(

)5(

 (27)

Layer 3

Similarly to layer 5, here we only have to calculate the error at each node of this layer5:

∑∑
== ∂

∂
∂
∂

∂
∂

−=
∂
∂

−=
∂
∂

−=
NOV

m k

km

km

m

m

m
NOV

m k

m

k
k Out

Out
Out
Out

Out
E

Out
E

Out
E

1
)3(

)4(

)4(

)5(

)5(
1

)3()3(
)3(δ . (28)

Taking into account eqs. (25) και (26) this can be simplified as:

∑
= ∂

∂
=

NOV

m k

km
mk Out

Out
1

)3(

)4(
)5()3(δδ , k = 1,..., NumRules. (29)

From (10) by differentiation we get:

m
k

N

i

m
ki

m
ik

m
kN

m
kN

m
k

m
k

k

km

faIna

aInaInaIna
Out
Out

Inputs

InputsInputs

=+=

++++=
∂
∂

∑
=1

0
)1(

0
)1()1(

22
)1(

11)3(

)4(



. (30)

Layer 2

∑

∑

=

=

∂
∂

=

=
∂
∂

∂
∂

−=
∂
∂

−=

Rules

Rules

N

k k

k
k

N

k k

k

kk
k

Out
Out

Out
Out

Out
E

Out
E

1
)2(

)3(
)3(

1
)2(

)3(

)3()2(
)2(

2 1

2

2

2 1

2

21

1

δ

δ

. (31)

and



















≠









−

=










−

=
∂

∂

∑

∑

∑

=

=

=

212

1

)2(

)2(

212

1

)2(

)2(

1

)2(

)2(

)3(

εάν,

εάν,

2

2

1

2

kk

Out

Out

kk

Out

OutOut

Out
Out

Rules

Rules

Rules

N

i
i

k

N

i
i

k

N

i
i

k

k . (32)

k1 ,k2 = 1, 2, ..., NumRules.

5 NOV = NumOutVars = Number of Output Variables.

Layer 1 (Inputs)

)1(

)1(

)1()1(

)1(

)1(

)1()1(

)1(

)1(

)1()1(

ij

ij

ijij

ij

ij

ijij

ij

ij

ijij

c
Out

Out
E

c
E

b
Out

Out
E

b
E

a
Out

Out
E

a
E

∂
∂

∂
∂

−=
∂
∂

−

∂
∂

∂
∂

−=
∂
∂

−

∂
∂

∂
∂

−=
∂
∂

−

 (33)

and

∑∑
== ∂

∂
=

∂
∂

∂
∂

−=
∂
∂

−=
RulesRules N

k ij

k
k

N

k ij

k

kij
ij Out

Out
Out
Out

Out
E

Out
E

1
)1(

)2(
)2(

1
)1(

)2(

)2()1(
)1(δδ (34)

whereas







−
=

∂
∂

 otherwise.,0

noderulethtoconnectedisoutput iff,)1(
)1(

)2(

)1(

)2(kOut
Out
Out

Out
Out ij

ij

k

ij

k (35)

For the premise parameters of the fuzzy rules the following hold:









=

≠−
−=

∂

∂









=

≠−
−

−
=

∂

∂

−=
∂

∂

)1()1(

)1()1()1()1(
)1()1(

)1(

)1(

)1(

)1()1(

)1()1()1()1(
)1(

)1()1(

)1(

)1(

)1()1(
)1(

)1(

)1(

)1(

εάν0,

εάν),1(
2

εάν0,

εάν),1(ln2

)1(
2

iji

ijiijij
iji

ij

ij

ij

iji

ijiijij
ij

iji

ij

ij

ijij
ij

ij

ij

ij

cIn

cInOutOut
cIn

b

c
Out

cIn

cInOutOut
a

cIn

b
Out

OutOut
a
b

a
Out

 (36)

 i = 1, 2, ..., NumInVars
 j = 1, 2, ..., NumInTerms.

In case we employ the bell-shaped membership function (5) the corresponding relations are:

)1(
2)1(

)1()1(

)1(

)1(

)1(
3)1(

2)1()1(

)1(

)1(

)(

)(

)(

ij
ij

iji

ij

ij

ij
ij

iji

ij

ij

Out
cIn

c
Out

Out
cInOut

σ

σσ

−
=

∂

∂

−
=

∂

∂

. (37)

And finally:












∂
∂

−+=+












∂
∂

−+=+












∂
∂

−+=+

)1(
)1()1(

)1(
)1()1(

)1(
)1()1(

)()1(

)()1(

)()1(

ij
ijij

ij
ijij

ij
ijij

c
Encnc

b
Enbnb

a
Enana

η

η

η

 (38)

 i = 1, 2, ..., NumInVars
 j = 1, 2, ..., NumInTerms.

Appendix C

Derivation of Error Back-Propagation Algorithm for ANFIS-ART and CANFIS-ART

The following derivation serves the adjustment of the Layer's 2 parameters)2(

ijυ and)2(
iju via the

Error Back-Propagation Algorithm (EBPA), at each iteration in order to minimize the following
instantaneous error function:

2)5(

1

)]()([
2
1)(where

,)()(

nOutnynE

nEnE

m
d
mm

NOV

m
m

−=

= ∑
= m = 1,..., NumOutVars. (39)

Layer 6 (Output)

There is no parameter to adjust in this layer. We only have to calculate the error and back-
propagate it to layer 4:

)()(
)(

)()()6(
)6(

)6(nOutny
nOut

nEn m
d
m

m
m −=

∂
∂

−=δ , m = 1,..., NumOutVars. (40)

Layer 5

The consequent parameters in this layer are adjusted via the RLS algorithm. Therefore back-
propagation plays no adjustment role here. We only calculate the following quantity that is going
to be used in the next layer:

NumRules.,,2,1,1)5(

)6(

==
∂
∂ k
Out
Out

km

m (41)

Layer 4

Similarly to layer 5, here we only have to calculate the error at each node of this layer:

∑∑
== ∂

∂
∂
∂

∂
∂

−=
∂
∂

−=
∂
∂

−=
NOV

m k

km

km

m

m

m
NOV

m k

m

k
k Out

Out
Out
Out

Out
E

Out
E

Out
E

1
)4(

)5(

)5(

)6(

)6(
1

)4()4(
)4(δ . (42)

Taking into account eqs. (25) και (26) this can be simplified as:

∑
= ∂

∂
=

NOV

m k

km
mk Out

Out
1

)4(

)5(
)6()4(δδ . k = 1,..., NumRules. (43)

From (20) by differentiation we get:

m
k

N

i

m
ki

m
ik

m
kN

m
kN

m
k

m
k

k

km

faIna

aInaInaIna
Out
Out

Inputs

InputsInputs

=+=

++++=
∂
∂

∑
=1

0
)1(

0
)1()1(

22
)1(

11)4(

)5(



. (44)

Layer 3

∑

∑

=

=

∂
∂

=

=
∂
∂

∂
∂

−=
∂
∂

−=

Rules

Rules

N

k k

k
k

N

k k

k

kk
k

Out
Out

Out
Out

Out
E

Out
E

1
)3(

)4(
)4(

1
)3(

)4(

)4()3(
)3(

2 1

2

2

2 1

2

21

1

δ

δ

. (45)

and



















≠









−

=










−

=
∂
∂

∑

∑

∑

=

=

=

212

1

)3(

)3(

212

1

)3(

)3(

1

)3(

)3(

)4(

εάν,

εάν,

2

2

1

2

kk

Out

Out

kk

Out

OutOut

Out
Out

Rules

Rules

Rules

N

i
i

k

N

i
i

k

N

i
i

k

k . (46)

k1 ,k2 = 1, 2, ..., NumRules.

Layer 2

)2(

)2(

)2()1(

)2(

)2(

)2()2(

ij

ij

ijij

ij

ij

ijij

u
Out

Out
E

u
E

Out
Out

EE

∂
∂

∂
∂

−=
∂
∂

−

∂
∂

∂
∂

−=
∂
∂

−
υυ

 (47)

and

)2(

)3(
)3(

)2(

)3(

)3()2(
)2(

ij

jk
k

ij

jk

jkij
ij Out

Out
Out
Out

Out
E

Out
E

∂
∂

=
∂
∂

∂
∂

−=
∂
∂

−= ==

=

δδ (48)

whereas

)1(

)3(

)2(

)3(

ij

jk

ij

jk

Out
Out

Out
Out == =
∂
∂

 (49)

For the premise parameters of the fuzzy rules the following hold:



 ≤−≤−

==
∂

∂


 ≤−≤

==
∂

∂

 otherwise 0,
1)(0if,

 otherwise 0,
1)(0if,

)2()2(

)2(

)2(

)2()2(

)2(

)2(

γγ

γυγ
υ

ijij

ij

ij

ijij

ij

ij

Inu
u

Out

InOut

 (50)

 And finally:












∂
∂

−+=+












∂
∂

−+=+

)2(
)2()2(

)2(
)2()2(

)()1(

)()1(

ij
ijij

ij
ijij

u
Enunu

Enn

η

υ
ηυυ

 (51)

 i = 1, 2, ..., NumInVars
 j = 1, 2, ..., NumInTerms.

References

[1] Jang R. J.-S., Sun C.-T., Mizutani E., (1997), “Neuro-Fuzzy and Soft Computing, A

Computational Approach to Learning and Machine Intelligence”, Prentice Hall, Upper
Saddle River, NJ 07458.

[2] Carpenter G.A., Grossberg S., Rosen B.D., “Fuzzy ART: Fast Stable Learning and

Categorization of Analog Patterns by an Adaptive Resonance System”, Neural Networks,
vol. 4, pp. 759-771, 1991.

[3] C.J. Lin, C.T. Lin, "An ART-Based Fuzzy Adaptive Learning Control Network", IEEE

Transactions on Fuzzy Systems, vol. 5, No. 4, Nov. 1997.

[4] A. Garrett, "Fuzzy ART and Fuzzy ARTMAP Neural Networks", 22-12-03,

http://www.mathworks.com/matlabcentral/fileexchange/4306-fuzzy-art-and-fuzzy-artmap-
neural-networks

http://www.mathworks.com/matlabcentral/fileexchange/4306-fuzzy-art-and-fuzzy-artmap-neural-networks
http://www.mathworks.com/matlabcentral/fileexchange/4306-fuzzy-art-and-fuzzy-artmap-neural-networks

	1. Introduction
	2. Types of Various ANFIS Systems (Scatter, Grid, ART, MISO, MIMO)
	3. The “Grid” and “Scatter” ANFIS/CANFIS Architectures
	3.1 ANFIS and CANFIS Networks
	3.2 Description of ANFIS Operation
	3.3 Description of CANFIS Operation

	4. The Fuzzy-ART ANFIS and Fuzzy-ART CANFIS Network Architectures
	4.1 Description of ANFIS-ART Operation.
	4.2 Description of CANFIS-ART Operation.

	5. Block Inputs, Outputs and Parameters
	5.1 Inputs
	5.2 Outputs
	5.3 ANFIS Block Parameters.
	5.4 CANFIS Block Parameters.
	5.5 ANFIS-ART and CANFIS-ART Block Parameters.
	5.6 Block Parameter’s Typical Values.

	6. Demos
	6.1 Setting-Up the Workspace
	6.2 Demos Description
	6.2.1 ANFIS Demos
	6.2.2 CANFIS Demos

	7. Backpropagation Implementation Verification
	7.1 Implementation Pitfalls
	7.2 Gradient Checking
	7.3 ANFIS/CANFIS Operational Assumptions
	7.4 Warning!

