Doctors typically assess the depth and severity of a burn injury based on the visual appearance of the wound when the patient is first admitted to the hospital. This method often fails to provide an accurate picture, as certain burn injuries worsen over time. Even sophisticated techniques, such as ultrasound and thermography, cannot ensure appropriate diagnosis. As a result, by the time treatment has been determined, the tissue may be damaged irreversibly.
Researchers at the Institute for Biodiagnostics, a division of Canada's National Research Council, have developed a tool that enables doctors to detect and treat threatened tissue while there is still time to save it. The tool uses near-infrared (NIR) spectroscopy and imaging to monitor variations in skin hemodynamics (oxygen utilization and blood volume) at the site of the wound. The researchers used MathWorks tools to analyze their data and experiment with algorithmic approaches.
"MathWorks products allowed us to explore a lot of data analysis options with little effort," says Dr. Lorenzo Leonardi, Principal Investigator on the project.