The professors developed an engineering lab that uses computers interfaced with test and measurement instrumentation to build systems that mimic commercial subsystems, such as global positioning system sensors, ground penetration radar, and digital cameras.
They realized that the lab would be an invaluable teaching tool for exposing students to real engineering challenges. The lab workstations are equipped with General Purpose Interface Bus (GPIB)–capable test and measurement equipment, acoustic and ultrasonic transducers, and stepper motor–controlled actuators. The instrumentation consists of an Agilent® programmable multimeter, power supply, function generator and digital oscilloscope linked to a GPIB controller card, and a PC with a National Instruments I/O board.
MATLAB was chosen as the programming environment because it is a standard. “It is great for problem solving and very useful for visualizations and plotting,” says McKnight. “MATLAB is also easy for the students to work with—they don’t have to program to use it. Finally, it is superior to C for most analysis tasks.”
Data Acquisition Toolbox controls and communicates with industry-standard A/D and D/A boards, and Instrument Control Toolbox enables instrument control commands to be sent over a GPIB, serial, USB, or Ethernet connection. “The overriding advantage of using MathWorks products,” notes McKnight, “is that students can perform instrument control and data acquisition functions in the same environment and with the same syntax they use for signal processing, computation, graphics, and visualization.”
The course curriculum is based on modules that build on each other throughout the semester. Students measure the speed of sound in air and water, control a stepper motor and an x-y positioner, and image a subsurface object by ultrasound reflection. They begin by writing programs that instruct the computer to cause physical movement of a motor—providing immediate, rewarding feedback.
A second project is color-analyzing a videocam image to sort colored Ping-Pong balls into tubes that are rotated into place with a stepper motor.
Between 50 and 100 freshman engineering students take the Engineering Problem-Solving and Computation course in the HTT&TL format each year. As they progress in their studies, they continue to develop and use MathWorks skills in other courses such as Electromagnetic Fields, a junior-year engineering course where students use stepper motors and MATLAB—applying the same skills learned in the HTT&TL curriculum—to control the angle of antennas.
Three Massachusetts community colleges are adopting Northeastern’s lab curriculum into their own engineering courses.