
www.embedded-world.eu

 Design and Verification of Algorithms for Object

Detection and Tracking Using Lidar Data

Marco Roggero1, Prashant Arora2, Gael Goron2, Anand Raja2, Elad Kivelevitch2
1: The MathWorks GmbH, Aachen, Germany
2: The MathWorks Inc., Natick (MA), USA

Abstract—Lidar sensors are essential for autonomous vehicles and

most ground moving robots. In their short scan cycles, these sensors

generate a large number of points containing information that can

be used to detect obstacles in the surrounding environment. While

the process of extracting information, detecting and tracking

relevant objects, and filtering noise or road reflections is complex, it

needs to be reliable and accurate. In this work, we explain how to

preprocess raw point clouds from lidar sensors in MATLAB® to

generate detections for conventional trackers that assume one

detection per object per sensor scan. We then define a cuboid model

to describe kinematics, dimensions, and measurements of extended

objects being tracked with a joint probabilistic data association

(JPDA) tracker and use an interacting multiple model (IMM) filter.

Finally, we mention how to generate C code from the algorithm and

verify execution results.

Keywords—lidar; point cloud; detection; tracking; autonomous

driving

I. INTRODUCTION
This paper shows how to track vehicles using measurements
from a lidar sensor mounted on top of an autonomous vehicle,
referred to as the ego vehicle. The reported example illustrates
the workflow in MATLAB® for processing point clouds and
tracking objects. The lidar data used in this example is recorded
from a highway driving scenario.

Due to the high resolution of lidars, each scan contains a large
number of 3D points, commonly known as a point cloud. This
data must be preprocessed to extract objects of interest, such as
cars, cyclists, and pedestrians, commonly referred to as
obstacles. Point cloud regions belonging to obstacles are
clustered and each cluster is converted to a bounding box
detection. Detected objects are then tracked with a joint
probabilistic data association (JPDA) tracker and an interacting
multiple model (IMM) filter. Both the JPDA[1,2,3] tracker and
the IMM filter[1] are available as part of Sensor Fusion and
Tracking ToolboxTM[4].

This work is organized as follows: in the next section, we
describe how lidar data is processed to obtain bounding box
detections. In section 3, we describe the models, filter, and
tracker used to track the object bounding boxes, followed by

results. Finally, section 6 provides a summary and future
directions.

II. LIDAR DATA PROCESSING

A. Reading Lidar Data

The lidar data used in this example was recorded using a
Velodyne® HDL32E[5] sensor in PCAP format[6]. Each scan
is stored as a 3D point cloud. Efficiently processing this data
using fast indexing and search is key to the performance of the
sensor processing pipeline. To achieve this efficiency
a MATLAB pointCloud object is used, which internally
organizes the data using a K-d tree data structure.
The velodyneFileReader constructs the
organized pointCloud for each lidar scan.
The Location property of the pointCloud is an M-by-N-
by-3 matrix containing the X, Y, and Z coordinates of points in
meters. The point intensities are stored in the Intensity
property of the pointCloud object.

To visualize streaming point cloud data, we have used the
MATLAB object named pcplayer[7] and specified the
region around the vehicle to be displayed.

Fig 1: Visualization of one frame of the lidar point cloud.

Next, we describe how to segment points belonging to the
ground plane, the ego vehicle, and nearby obstacles.

B. Segmenting the Ego Vehicle

Since the lidar is mounted on top of the vehicle, the point cloud
may contain points belonging to the vehicle itself, such as on
the roof or hood. To segment these points, it is necessary to
know the dimensions of the vehicle and the sensor’s mounting
position in vehicle coordinates.

Results for one frame of data are shown in Figure 2.

Fig 2: Reflection points generated by the ego vehicle. Knowing
the vehicle dimensions and sensor position makes this
segmentation possible.

C. Segmenting Ground Plane and Nearby Obstacles

To identify obstacles from the lidar data, we first segment
points belonging to the ground plane using
the segmentGroundFromLidarData[8] function. This
function operates on the range image to label ground points
using a connected components algorithm [11]. The result is
shown in Figure 3: different colors are used for points generated
from road reflections and the ego vehicle, and for still-
unlabeled points that are potentially generated from dynamic
objects, such as vehicles, pedestrians, and bicycles, or static
objects, such as trees and buildings.

Fig 3: Different colors used for road reflections, the ego vehicle,
and still-unlabeled points.

The next step consists of segmenting nearby obstacles by
looking for all points that are not part of the ground or ego
vehicle within regions of interest around the ego vehicle. This
region of interest can be determined online based on the number
of lanes on the highway or the maximum range of the sensor.

Fig 4: Nearby obstacles marked with red.

Once the point cloud processing pipeline for a single lidar scan
is defined, it can be applied at each step to the scans obtained
while driving or to the entire sequence of recorded data.

D. Detecting and Marking Relevant Objects

Points belonging to obstacles within a radius of interest from
the ego vehicle can be clustered and marked with 3D bounding
boxes containing the detected object and other information
required by a tracker; for example, time of detection and
uncertainty of the measurement. This type of structured
information is necessary to feed tracking algorithms such as
those that we describe in the next section.

www.embedded-world.eu

III. MULTI-OBJECT TRACKING

A. Target State and Sensor Measurement Model

The first step in tracking an object is defining its state, and the
models that define both the transition of the state and the
corresponding measurement from the space. These two sets of
equations are collectively known as the state-space model of the
target. To model the state of vehicles for tracking using lidar,
we use a cuboid model with the following convention:

𝑥 = [𝑥𝑘𝑖𝑛 𝜃 𝑙 𝑤 ℎ]

where 𝑥𝑘𝑖𝑛 represents the motion of the target center with
respect to the ego vehicle, 𝜃 represents the yaw angle, and 𝑙, 𝑤,
and ℎ represent the length, width, and height of the target,
respectively. We have used two state-space models: a constant
velocity (cv) cuboid model and a constant turn-rate (ct) cuboid
model. These models differ in the way they define the kinematic
part of the state, as described below:

𝑥𝑐𝑣 = [𝑥 𝑥̇ 𝑦 𝑦̇ 𝑧 𝑧 ̇ 𝜃 𝑙 𝑤 ℎ]

𝑥𝑐𝑡 = [𝑥 𝑥̇ 𝑦 𝑦̇ 𝜃̇ 𝑧 𝑧 ̇ 𝜃 𝑙 𝑤 ℎ]

Decoupling the orientation of the bounding box, 𝜃, and 2D
velocity components, 𝑥̇ and 𝑦̇, assists in tracking objects in the
ego vehicle frame, as the orientation of the box is not
necessarily aligned with the vehicle motion.

Measurement models are used to describe how the sensor
perceives the constant velocity and constant turn-rate states,
respectively, and they return bounding box measurements.
Because the state contains information about the size of the
target, the measurement model includes the effect of center-
point offset and bounding box shrinkage, as perceived by the
sensor, due to effects such as self-occlusion [12]. This effect is
modeled by a shrinkage factor that is directly proportional to
the distance from the tracked vehicle to the sensor.

B. Setting Up the Tracker

The image below shows the complete workflow to obtain a list
of tracks from a pointCloud input.

Fig 5: Workflow used to obtain tracks from the point cloud.

A joint probabilistic data association tracker
(trackerJPDA[9]) coupled with an IMM filter
(trackingIMM[10]) is used to track objects in this case. The

IMM filter is configured to use the constant velocity and
constant turn-rate models defined in the previous section. The
IMM approach helps a track to switch between motion models
and thus achieve good estimation accuracy during events such
as maneuvering or lane changing.

IV. VISUALIZING THE RESULTS
The visualization is organized into three panels:
1. The left panel displays lidar preprocessing and tracking and

shows the raw point cloud, segmented ground, and
obstacles. It also shows the resulting detections from the
detector model and the tracks of vehicles generated by the
tracker.

2. The top-right panel displays the ego vehicle’s 2D bird’s-
eye view of the scenario. It shows the obstacle point cloud,
bounding box detections, and tracks generated by the
tracker. For reference, it also displays the image recorded
from a camera mounted on the ego vehicle and its field of
view.

3. The bottom-right panel displays the tracking details and
shows the scenario zoomed around the ego vehicle. It also
shows finer tracking details, such as error covariance in
estimated position of each track and its motion model
probabilities, denoted by cv and ct.

Fig 6: Lidar preprocessing and tracking, ego vehicle display,
and tracking details.

Figure 6 shows the three panels. The tracks are represented by
green bounding boxes. The bounding box detections are
represented by orange bounding boxes. The detections also
have orange points inside them, representing the point cloud
segmented as obstacles. The segmented ground is shown in
purple. The cropped or discarded point cloud is shown in blue.

A. C Code Generation

Once the algorithms for point segmentation, object detection,
and tracking have been developed, fine-tuned, and tested, it is
time to convert these algorithms into C code with MATLAB
CoderTM.

The number of confirmed tracks is the same for MATLAB and
MEX code execution. This assures that the lidar preprocessing
and tracking algorithm returns the same results with generated
C code as with the MATLAB code.

V. RESULTS

In this section, we discuss the ability of the combination of the
lidar measurement model, joint probabilistic data association,
and interacting multiple model filter to achieve a good
estimation of the vehicle tracks. Videos and animations
showing phenomena explained in the next three paragraphs are
available on mathworks.com [13].

A. Track Maintenance

While most tracks maintain their IDs and trajectory also if the
vehicle is not detected for a short time, some tracks can be lost
when the tracked vehicle is missed by the sensor for a long time.
We have also observed that the tracked objects are able to
maintain their shape and kinematic center by positioning the
detections onto the visible portions of the vehicles. For
example, as some tracks move forward, bounding box
detections start to fall on their visible rear portion and the track
maintains the actual size of the vehicle.

B. Capturing Maneuvers

Using an IMM filter helps the tracker to maintain tracks on
maneuvering vehicles. When a vehicle changes lane, the tracker
is able to maintain a track on the vehicle during this
maneuvering event. During this event, the probability of
following the constant turn-rate model by the track increases.

C. Joint Probabilistic Data Association

Using a joint probabilistic data association tracker helps in
maintaining tracks during ambiguous situations where vehicles
have a low probability of detection due to their large distance
from the sensor. The tracker can maintain tracks during events
when one of the vehicles is not detected. Typical for the JPDA
algorithm is that two tracks that are next to each other and at a
large distance from the ego vehicle coalesce when one vehicle
is not detected but separate quickly as soon as the vehicle is
detected again.

VI. SUMMARY AND FUTURE DIRECTIONS

We have shown first how a raw point cloud can be preprocessed
to generate detections for conventional trackers. In the second
part of the paper, we have shown how to use the JPDA tracker
with an IMM filter to track objects using the lidar sensor and
generate C code from the algorithm and verify execution
results.

There are two main directions in which this work can be
extended. The first direction is to fuse the lidar tracks from this
work with tracks coming from other sensor modalities; for
example vision and radar sensors. Having multiple sensor
modalities can improve tracking by providing complimentary
data and resilience to weather conditions. The other direction is
to use the code that was automatically generated to rapidly
prototype a tracking solution for an autonomous vehicle.

REFERENCES
[1] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking

Systems, Artech House, 1999.
[2] D. Musicki, “Joint Integrated Probabilistic Data Association: JIPDA,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 3,
2004, pp. 1093-1099,.

[3] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion: A
Handbook of Algorithms, YBS Publishing, 2011.

[4] Elad H. Kivelevitch, Greg Dionne, Trevor Roose, Prashant Arora, Brian
Fanous, Ryan Salvo, Vincent Pellissier, Ric Losada, and Rick Gentile,
“Sensor Fusion Tools in Support of Autonomous Systems,” AIAA
Scitech 2019 Forum. January 2019.

[5] https://velodynelidar.com/hdl-32e.html
[6] https://github.com/hokiespurs/velodyne-copter/wiki/PCAP-format
[7] https://mathworks.com/help/vision/ref/pcplayer.html
[8] https://de.mathworks.com/help/vision/ref/segmentgroundfromlidardata.h

tml
[9] https://www.mathworks.com/help/fusion/ref/trackerjpda-system-

object.html
[10] https://www.mathworks.com/help/fusion/ref/trackingimm.html
[11] Bogoslavski, I. “Efficient Online Segmentation for Sparse 3D Laser

Scans.” Journal of Photogrammetry, Remote Sensing and
Geoinformation Science, vol. 85, number 1, 2017, pp. 41-52.

[12] Arya Senna Abdul Rachman, Arya. “3D-LIDAR Multi Object Tracking
for Autonomous Driving: Multi-target Detection and Tracking under
Urban Road Uncertainties.” (2017).

[13] https://de.mathworks.com/help/driving/examples/track-vehicles-using-
lidar.html

MATLAB and Simulink are registered trademarks of The
MathWorks, Inc. See mathworks.com/trademarks for a list of
additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

https://arc.aiaa.org/doi/abs/10.2514/6.2019-0384
https://arc.aiaa.org/doi/abs/10.2514/6.2019-0384
https://velodynelidar.com/hdl-32e.html
https://velodynelidar.com/hdl-32e.html
https://github.com/hokiespurs/velodyne-copter/wiki/PCAP-format
https://github.com/hokiespurs/velodyne-copter/wiki/PCAP-format
https://mathworks.com/help/vision/ref/pcplayer.html
https://mathworks.com/help/vision/ref/pcplayer.html
https://de.mathworks.com/help/vision/ref/segmentgroundfromlidardata.html
https://de.mathworks.com/help/vision/ref/segmentgroundfromlidardata.html
https://de.mathworks.com/help/vision/ref/segmentgroundfromlidardata.html
https://de.mathworks.com/help/vision/ref/segmentgroundfromlidardata.html
https://www.mathworks.com/help/fusion/ref/trackerjpda-system-object.html
https://www.mathworks.com/help/fusion/ref/trackerjpda-system-object.html
https://www.mathworks.com/help/fusion/ref/trackerjpda-system-object.html
https://www.mathworks.com/help/fusion/ref/trackerjpda-system-object.html
https://www.mathworks.com/help/fusion/ref/trackingimm.html
https://www.mathworks.com/help/fusion/ref/trackingimm.html
https://de.mathworks.com/help/driving/examples/track-vehicles-using-lidar.html
https://de.mathworks.com/help/driving/examples/track-vehicles-using-lidar.html
https://de.mathworks.com/help/driving/examples/track-vehicles-using-lidar.html
https://de.mathworks.com/help/driving/examples/track-vehicles-using-lidar.html

