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Abstract—Lidar sensors are essential for autonomous vehicles and 

most ground moving robots. In their short scan cycles, these sensors 

generate a large number of points containing information that can 

be used to detect obstacles in the surrounding environment. While 

the process of extracting information, detecting and tracking 

relevant objects, and filtering noise or road reflections is complex, it 

needs to be reliable and accurate. In this work, we explain how to 

preprocess raw point clouds from lidar sensors in MATLAB® to 

generate detections for conventional trackers that assume one 

detection per object per sensor scan. We then define a cuboid model 

to describe kinematics, dimensions, and measurements of extended 

objects being tracked with a joint probabilistic data association 

(JPDA) tracker and use an interacting multiple model (IMM) filter. 

Finally, we mention how to generate C code from the algorithm and 

verify execution results. 
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I. INTRODUCTION  
This paper shows how to track vehicles using measurements 
from a lidar sensor mounted on top of an autonomous vehicle, 
referred to as the ego vehicle. The reported example illustrates 
the workflow in MATLAB® for processing point clouds and 
tracking objects. The lidar data used in this example is recorded 
from a highway driving scenario.  

Due to the high resolution of lidars, each scan contains a large 
number of 3D points, commonly known as a point cloud. This 
data must be preprocessed to extract objects of interest, such as 
cars, cyclists, and pedestrians, commonly referred to as 
obstacles. Point cloud regions belonging to obstacles are 
clustered and each cluster is converted to a bounding box 
detection. Detected objects are then tracked with a joint 
probabilistic data association (JPDA) tracker and an interacting 
multiple model (IMM) filter. Both the JPDA[1,2,3] tracker and 
the IMM filter[1] are available as part of Sensor Fusion and 
Tracking ToolboxTM[4]. 

This work is organized as follows: in the next section, we 
describe how lidar data is processed to obtain bounding box 
detections. In section 3, we describe the models, filter, and 
tracker used to track the object bounding boxes, followed by 

results. Finally, section 6 provides a summary and future 
directions. 

II. LIDAR DATA PROCESSING 

A. Reading Lidar Data 

The lidar data used in this example was recorded using a 
Velodyne® HDL32E[5] sensor in PCAP format[6]. Each scan 
is stored as a 3D point cloud. Efficiently processing this data 
using fast indexing and search is key to the performance of the 
sensor processing pipeline. To achieve this efficiency 
a MATLAB pointCloud object is used, which internally 
organizes the data using a K-d tree data structure. 
The velodyneFileReader constructs the 
organized pointCloud for each lidar scan. 
The Location property of the pointCloud is an M-by-N-
by-3 matrix containing the X, Y, and Z coordinates of points in 
meters. The point intensities are stored in the Intensity 
property of the pointCloud object. 

To visualize streaming point cloud data, we have used the 
MATLAB object named pcplayer[7] and specified the 
region around the vehicle to be displayed. 

 

Fig 1: Visualization of one frame of the lidar point cloud. 

 



Next, we describe how to segment points belonging to the 
ground plane, the ego vehicle, and nearby obstacles. 

B. Segmenting the Ego Vehicle 

Since the lidar is mounted on top of the vehicle, the point cloud 
may contain points belonging to the vehicle itself, such as on 
the roof or hood. To segment these points, it is necessary to 
know the dimensions of the vehicle and the sensor’s mounting 
position in vehicle coordinates.  

Results for one frame of data are shown in Figure 2. 

 

Fig 2: Reflection points generated by the ego vehicle. Knowing 
the vehicle dimensions and sensor position makes this 
segmentation possible. 

C. Segmenting Ground Plane and Nearby Obstacles 

To identify obstacles from the lidar data, we first segment 
points belonging to the ground plane using 
the segmentGroundFromLidarData[8] function. This 
function operates on the range image to label ground points 
using a connected components algorithm [11]. The result is 
shown in Figure 3: different colors are used for points generated 
from road reflections and the ego vehicle, and for still-
unlabeled points that are potentially generated from dynamic 
objects, such as vehicles, pedestrians, and bicycles, or static 
objects, such as trees and buildings.  

 

Fig 3: Different colors used for road reflections, the ego vehicle, 
and still-unlabeled points. 

The next step consists of segmenting nearby obstacles by 
looking for all points that are not part of the ground or ego 
vehicle within regions of interest around the ego vehicle. This 
region of interest can be determined online based on the number 
of lanes on the highway or the maximum range of the sensor. 

 

Fig 4: Nearby obstacles marked with red. 

Once the point cloud processing pipeline for a single lidar scan 
is defined, it can be applied at each step to the scans obtained 
while driving or to the entire sequence of recorded data.  

D. Detecting and Marking Relevant Objects 

Points belonging to obstacles within a radius of interest from 
the ego vehicle can be clustered and marked with 3D bounding 
boxes containing the detected object and other information 
required by a tracker; for example, time of detection and 
uncertainty of the measurement. This type of structured 
information is necessary to feed tracking algorithms such as 
those that we describe in the next section. 
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III. MULTI-OBJECT TRACKING 

A. Target State and Sensor Measurement Model 

The first step in tracking an object is defining its state, and the 
models that define both the transition of the state and the 
corresponding measurement from the space. These two sets of 
equations are collectively known as the state-space model of the 
target. To model the state of vehicles for tracking using lidar, 
we use a cuboid model with the following convention: 

𝑥 = [𝑥𝑘𝑖𝑛  𝜃 𝑙 𝑤 ℎ ] 

where 𝑥𝑘𝑖𝑛 represents the motion of the target center with 
respect to the ego vehicle, 𝜃 represents the yaw angle, and 𝑙, 𝑤, 
and ℎ represent the length, width, and height of the target, 
respectively. We have used two state-space models: a constant 
velocity (cv) cuboid model and a constant turn-rate (ct) cuboid 
model. These models differ in the way they define the kinematic 
part of the state, as described below: 

𝑥𝑐𝑣 =  [𝑥 𝑥̇ 𝑦 𝑦̇ 𝑧 𝑧  ̇ 𝜃 𝑙 𝑤 ℎ] 

𝑥𝑐𝑡 =  [𝑥 𝑥̇ 𝑦 𝑦̇ 𝜃̇ 𝑧 𝑧  ̇ 𝜃 𝑙 𝑤 ℎ] 

Decoupling the orientation of the bounding box, 𝜃, and 2D 
velocity components, 𝑥̇ and 𝑦̇, assists in tracking objects in the 
ego vehicle frame, as the orientation of the box is not 
necessarily aligned with the vehicle motion.  

Measurement models are used to describe how the sensor 
perceives the constant velocity and constant turn-rate states, 
respectively, and they return bounding box measurements. 
Because the state contains information about the size of the 
target, the measurement model includes the effect of center-
point offset and bounding box shrinkage, as perceived by the 
sensor, due to effects such as self-occlusion [12]. This effect is 
modeled by a shrinkage factor that is directly proportional to 
the distance from the tracked vehicle to the sensor. 

B. Setting Up the Tracker  

The image below shows the complete workflow to obtain a list 
of tracks from a pointCloud input. 

 

Fig 5: Workflow used to obtain tracks from the point cloud. 

A joint probabilistic data association tracker 
(trackerJPDA[9]) coupled with an IMM filter 
(trackingIMM[10]) is used to track objects in this case. The 

IMM filter is configured to use the constant velocity and 
constant turn-rate models defined in the previous section. The 
IMM approach helps a track to switch between motion models 
and thus achieve good estimation accuracy during events such 
as maneuvering or lane changing. 

IV. VISUALIZING THE RESULTS 
The visualization is organized into three panels:  
1. The left panel displays lidar preprocessing and tracking and 

shows the raw point cloud, segmented ground, and 
obstacles. It also shows the resulting detections from the 
detector model and the tracks of vehicles generated by the 
tracker. 

2. The top-right panel displays the ego vehicle’s 2D bird’s-
eye view of the scenario. It shows the obstacle point cloud, 
bounding box detections, and tracks generated by the 
tracker. For reference, it also displays the image recorded 
from a camera mounted on the ego vehicle and its field of 
view. 

3. The bottom-right panel displays the tracking details and 
shows the scenario zoomed around the ego vehicle. It also 
shows finer tracking details, such as error covariance in 
estimated position of each track and its motion model 
probabilities, denoted by cv and ct. 

 

Fig 6: Lidar preprocessing and tracking, ego vehicle display, 
and tracking details. 

Figure 6 shows the three panels. The tracks are represented by 
green bounding boxes. The bounding box detections are 
represented by orange bounding boxes. The detections also 
have orange points inside them, representing the point cloud 
segmented as obstacles. The segmented ground is shown in 
purple. The cropped or discarded point cloud is shown in blue. 

A. C Code Generation 

Once the algorithms for point segmentation, object detection, 
and tracking have been developed, fine-tuned, and tested, it is 
time to convert these algorithms into C code with MATLAB 
CoderTM.  



The number of confirmed tracks is the same for MATLAB and 
MEX code execution. This assures that the lidar preprocessing 
and tracking algorithm returns the same results with generated 
C code as with the MATLAB code. 

V. RESULTS

In this section, we discuss the ability of the combination of the 
lidar measurement model, joint probabilistic data association, 
and interacting multiple model filter to achieve a good 
estimation of the vehicle tracks. Videos and animations 
showing phenomena explained in the next three paragraphs are 
available on mathworks.com [13]. 

A. Track Maintenance

While most tracks maintain their IDs and trajectory also if the 
vehicle is not detected for a short time, some tracks can be lost 
when the tracked vehicle is missed by the sensor for a long time. 
We have also observed that the tracked objects are able to 
maintain their shape and kinematic center by positioning the 
detections onto the visible portions of the vehicles. For 
example, as some tracks move forward, bounding box 
detections start to fall on their visible rear portion and the track 
maintains the actual size of the vehicle. 

B. Capturing Maneuvers

Using an IMM filter helps the tracker to maintain tracks on 
maneuvering vehicles. When a vehicle changes lane, the tracker 
is able to maintain a track on the vehicle during this 
maneuvering event. During this event, the probability of 
following the constant turn-rate model by the track increases. 

C. Joint Probabilistic Data Association

Using a joint probabilistic data association tracker helps in 
maintaining tracks during ambiguous situations where vehicles 
have a low probability of detection due to their large distance 
from the sensor. The tracker can maintain tracks during events 
when one of the vehicles is not detected. Typical for the JPDA 
algorithm is that two tracks that are next to each other and at a 
large distance from the ego vehicle coalesce when one vehicle 
is not detected but separate quickly as soon as the vehicle is 
detected again. 

VI. SUMMARY AND FUTURE DIRECTIONS

We have shown first how a raw point cloud can be preprocessed 
to generate detections for conventional trackers. In the second 
part of the paper, we have shown how to use the JPDA tracker 
with an IMM filter to track objects using the lidar sensor and 
generate C code from the algorithm and verify execution 
results. 

There are two main directions in which this work can be 
extended. The first direction is to fuse the lidar tracks from this 
work with tracks coming from other sensor modalities; for 
example vision and radar sensors. Having multiple sensor 
modalities can improve tracking by providing complimentary 
data and resilience to weather conditions. The other direction is 
to use the code that was automatically generated to rapidly 
prototype a tracking solution for an autonomous vehicle. 
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