
1

Driving the Future - Integrating

ADAS in Software-Defined Vehicles

through Model-Based Design

Vamshi Kumbham, MathWorks

2

Automotive Industry Transformation:

3

Our Panel of Industry experts:

Nukul Sehgal
Application Engineering Team,

Software-Defined Vehicles,
Virtualization & DevOps

Dr. Rishu Gupta
Application Engineering Team,

ADAS & Artificial Intelligence

Kiran K Kulkarni
Industry Manager

4

What we are going to discuss:

Digital
Transformation

Application
Software

Development

Virtualization
Software
Factories

5

Mega Trends Driving the Evolution of Software-Defined Vehicles

Automotive Industry is undergoing a profound

transformation driven by convergence of various

trends:

• Electric Vehicles (EVs) and Electrification

• Fundamental transformation with advancements in

battery technology.

• Connected Cars and the IoT Revolution

• Safety, Predictive maintenance, and OTA updates.

• 5G technology

• Autonomous Driving and ADAS: Driving Smarter, Safer

• Investments in advanced sensor technology, AI and ML to

improve safety and reliability.

• Enormous data generated from sensors and camera

• Sophisticated SW architecture.

6

Under the hood of a Software Defined Vehicle

What are the Distinguishing Features of a Software Defined Vehicle

▪ 1: Changing architectures: Consolidation of

ECUs and high-performance compute

▪ 2: Hardware and software decoupling:

middleware

▪ 3: Changing application software: Signal to
service orientation

▪ 4: Vehicle can communicate to the cloud

1

2

3

4

Why Software Defined Transformation?

7

Under the hood of a Software Defined Vehicle

Changing architectures: Consolidation of ECUs and high-performance compute

▪ Conventional: Constrained by memory, Low

speed communication, High development

effort, Lack of scalability and reusability

▪ Software Defined Vehicle: Vehicle

computer (high compute) and zonal
computers, Combines domains, Scalable,

reusable, High-speed ethernet

Source: Deloitte

Future

1

8

Under the hood of a Software Defined Vehicle

Hardware and software decoupling: middleware

▪ Conventional: Hardware and software

coupled

▪ Software Defined Vehicle: Hardware

completely abstracted. Efficient

communication from software functions

2

9

Under the hood of a Software Defined Vehicle

Changing application software: Signal to service orientation

▪ Conventional: Static architecture, signal

based communication

▪ Software Defined Vehicle: Service-Oriented

Architecture is a software design principle

that promotes modular, loosely coupled,
and interoperable services.

3

10

Under the hood of a Software Defined Vehicle

Vehicle can communicate to the cloud

▪ Conventional: V-Cycle Development

▪ Software Defined Vehicle: Faster cycles of

development using DevOps. Features on

demand.

4

11

Developing SW for Modern Vehicles i.e., SDVs

Monolithic vs. Service Oriented App (SOA)
Bare Metal vs. Linux Target

Traditional vs. Virtual Validation Batch vs. CI/CD Automation

12

Service Oriented Communication (SOC)

signal-oriented communication

- send data independent of needs

- high bus load

- not efficient

service-oriented communication

- send data dependent of needs

- low bus load

- more efficient

SOA Application Communication

SOA Application Interface Patterns

13

Service Oriented Architecture (SOA) – How?

▪ SOA is used by multiple industrial standard middleware

including:

– AUTOSAR Adaptive Platform

– DDS (Data Distribution Services)

– ROS (Robot Operating System)

Drivers / BSP /

Hypervisor

LINUX

Adaptive AUTOSAR Stack

Application

SOC/HPCs

14

AUTOSAR Layered Software Architecture

Components

Run-time

Basic Services

Hardware

15

Automated Driving Algorithm Development

Algorithms

Perception Sensor Fusion

Planning Decision & Controls

Steering

Brakin g

Acceleration

Multidisciplinary Skills

16

Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls

17

Key subsystems of an automated driving system

Perception

18

Key subsystems of an automated driving system

Sensor Fusion

Perception

19

Key subsystems of an automated driving system

Learning Algorithms

Optimization

Sensor Fusion

Perception

Planning

20

Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls

Steering

Braking

Acceleration

21

Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls

22

Highway Lane Following

Environment
(Sensors)

Algorithms
(perception, sensor fusion, planning)

Decision logic Controller
(Actuation commands)

Vehicle

Dynamics

Metrics

23

Automated Driving Algorithm Development

Algorithms

Perception Sensor Fusion

Planning Decision & Controls

Steering

Brakin g

Acceleration

Multidisciplinary Skills

Software

Code

C/C++

GPU HDL

Architectures

AUTOSAR

ROS DDS

Deployment

24

Service-Oriented Architecture (SOA) Design

Describe SOA with

System Composer Implement detailed

components with

Simulink

Generate code with

Embedded Coder

25

Identify and Analyze
Services

Define Services and its
interfaces

Define Service Contracts
Implement and deploy

Services

How to decompose traditional application software compositions into services

for Software Defined Vehicles applications?

26

KPIT- Service-oriented arbitration of ADAS features with Model-Based Design

Link to the talk

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/images/events/automotive/de-mac-2023/service-oriented-arbitration-of-adas-features-with-model-based-design.pdf

27

Implement and Deploy Services

▪ Each service need to be deployed as a

standalone application, with its own

artifacts including

– Code

▪ C++ Code

▪ ARA Stub

– AUTOSAR interface descriptions

▪ Machine Manifest

▪ Execution Manifest

▪ Service Instance Manifest

Identify and
Analyze
Services

Define
Services and
its interfaces

Define
Service

Behavior

Implement
and deploy
Services

28

Deploy, Control, and Instrument Software Applications on Linux Platform (Run-

Time Environment)

29

Decompose the Monolithic Applications to SOA

To decompose monolithic

application components to

services we need to :

▪ Identify the different

components, functionalities,

and dependencies

▪ Understand component

interactions and execution

order of the components

Monolithic Application

SWC1 SWC2

SWC4SWC3

Service1 Service2

Service3

30

SOA Architecture

Model

Legacy

Model

Decompose the Monolithic Application

2. Deploy each as service

executables

1. Identify Service Components

Services

Technical Article - Migrating traditional automotive application compositions to AUTOSAR Adaptive services for Software Defined Vehicles

https://www.mathworks.com/company/newsletters/articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.htmlhttps:/www.mathworks.com/company/newsletters/articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html

31

Exploring Virtualization: The MathWorks Perspective

ECU

Virtualization of

ECU
Virtualization of complex

Scenarios

Virtualization in

the cloud

32

Use case of virtualization on the cloud

Use case: Enable a new feature—Sport + mode—
that reduces the time taken by vehicle to
accelerate from 0 to 60 mph (100 kph) per hour by
10 percent.

33

Virtualization

Hardware (Microcontroller)

OS
Low Level

Drivers

Middleware

Application Software

(ASW)

Hardware (Microcontroller)

C Abstraction

Application Software (ASW)

Runtime Environment (RTE)

OS

Services

ECU Abstraction CDD

AUTOSAR Runtime for Adaptive Application (ARA)

Virtual Machine / Hardware

Platform Foundation

Functional Custers

POSIX

PSE51/

C++ STL

OS Platform

Services

Functional

Custers

Application Software (ASW) Cloud Services

Classic Embedded Controller
AUTOSAR Classic Platform AUTOSAR Adaptive Platform [HPC Controllers]

Vehicle/ Component Models

[OR]

Real Components/Vehicle

Virtualizing the ECU –

VirtualECU

1

Virtualizing complex

models - Virtual Vehicle

& Components

Supporting Cloud

Workflows for

Virtualization
2

3

34

Virtualization – Virtual ECU [vECU]

Application

Software (ASW)

Stubs

(if necessary)

Type 1

Application

Software (ASW)

Simulated
Middleware

Stubs

(if necessary)

Type 2

Application

Software (ASW)

Production
Middleware

Type 3

Simulated

Drivers / OS

Application

Software (ASW)

Production
Middleware

Type 4

Production OS/

Drivers

Simulated

Hardware

Model-Based Design for

traditional embedded
development to SOA workflow
for SDV, with Automated Code

Generation

FPGA

CPU

GPU

PLC

FMI 3.0

- Simulink® as an integration platform

- Co-Exist with multiple integration platforms

- bring multiple virtual ECUs as FMUs (or) Model (or) C/C++ Code.

35

General Motors Cuts Testing Time in Half by Simulating E-Drive System
Approach Achieves 95% of Performance Targets Before Hardware Availability

Link

https://www.mathworks.com/company/user_stories/gm-virtual-ecus-accelerate-automotive-testing.html

36

Virtual Validation- Requirements

Virtual Worlds

Scenes Sensors

Scenarios Dynamics

37

Creating scenarios from real world data

Sensor data Virtual Scenario

38

Standard based testing given certification requirements

Euro NCAP Scenarios Euro NCAP Report

Scenario Test manager

Test Suite for Euro NCAP® Protocols

AEB Test Bench

AEB

Test Name Road Type #

Car-To-Car Rear Stationary (CCRs) Straight 75

Car-To-Car Rear Moving (CCRm) Straight 55

Car-To-Car Rear Braking (CCRb) Straight 4

Car-to-Car Front Turn-Across-Path (CCFtap) Junction 9

Car-to-Car Crossing Straight Crossing Path

(CCCscp)

Junction 25

Car-to-Car Front Head-On Straight (CCFhos) Straight 2

Car-to-Car Front Head-On Lane change

(CCFhol)

Straight 2

39

Exporting from RoadRunner Scenarios to ASAM OpenSCENARIO for multiple

driving simulators

40

Requirements

System or software

Architecture

Detailed design

Implementation

System Integration

and Test

Unit Testing

Verified and

Validation system

Model-Based Design for Automated Driving
Systematic use of models throughout the development process

Simulink/ MATLAB

Requirements Toolbox

Simulink

System composer

MATLAB. Simulink,

Automated Driving toolbox
Roadrunner

MATLAB coder,

Embedded Coder

Automated Driving toolbox

Roadrunner
Simulink Test

Automated Driving toolbox

Roadrunner
Simulink Test

ADAS/ AD features (AEB, LKA, ACC, …)

Real world scenarios, Euro NCAP

Perception, Navigation,

Sensor fusion, Controls

Hardware in Loop

Roadrunner

Simulink Requirements
Simulink Test

Model in Loop

Software in Loop

41

Goals of DevOps and Software Factory

Unites agile development with reliable operations

Goal: Reduce the time between committing a change

and placing it in production, while ensuring high quality

Version

Control
System

Check-inUnit

Test

Review

Developer

Models/

Code

Release

Build

Quality

Gate

Integration

Test

Release

Goal: Repeatability, Faster delivery, Higher quality

DevOps

Software Factory

42

OPERATE

DEPLOY

MONITOR

Operations

TEST

DEVELOP

BUILD

Development

DevOps building blocks for Embedded Production SW

Cloud

Desktop

Edge

System Simulation

MBSE MBD

Code Generation

Model- and

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

43

OPERATE

DEPLOY

MONITOR

Operations

TEST

BUILD

Development

Continuous Integration for embedded production SW

Cloud

Desktop

Edge

System Simulation

MBSE MBD

Code Generation

Model- and

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

DEVELOP

44

Automated testing and codegen via Continuous Integration

Challenge:

▪ Enable multiple engineers to simultaneously develop

features in parallel, but can share and sync with the

other colleagues

▪ Test application code while still in development,

thereby creating a “fix-as-you-go” workflow

▪ Automate large scale testing and code generation

when development branches are merged to

main/release branch

Solution:

Virtualize

Scale

▪ Componentize models and place them under

source control

▪ Test at model level, application software level,

and conduct MISRA C checks

▪ Setup non-interactive MATLAB on runner

computer(s); and perform automated tests,

codeGen, and report authoring tasks

Commit changed models/tests to git using Projects

> matlab -batch

Automated pipelines can be configured to run in a variety of

environments, to meet your scaling needs

bBattMgmt

main

bVCU

https://www.mathworks.com/videos/new-ways-to-work-in-simulink-part-8-manage-projects-using-automation-and-source-control-1598859340479.html

45

OPERATE

DEPLOY

MONITOR

Operations

TEST

BUILD

Development

DevOps building blocks for Embedded Production SW

Cloud

Desktop

Edge

System Simulation

MBSE MBD

Code Generation

Model- and

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

DEVELOP

4646Learn more: MATLAB on AWS, MathWorks Reference Architecture, MathWorks CloudCenter

Scaling up with parsim on the Cloud
Different cloud computing resources for different jobs

Running 1352 Simulations

~ 18 hours in series

~ 5.2 hours on Quadcore Laptop

~ 59 mins on an m5.12xlarge EC2 instance, 24 core

MATLAB

Parallel Computing Toolbox

MATLAB Parallel Server

GPU

Multi-core
CPU

Running 1352 Simulations

~ 22.7 mins on 5 Worker machines, 120 cores

~17 mins on 10 Worker machines, 240 cores

Worker Machine = m5.12xlarge (24 cores)

MATLAB on AWS EC2

https://github.com/mathworks-ref-arch/matlab-on-aws
https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/alternates/non-interactive/MATLAB-BATCH.md
https://www.mathworks.com/videos/what-is-mathworks-cloud-center-1651472260634.html

47

Our discussion

Digital
Transformation

Application
Software

Development

Virtualization
Software
Factories

48

Shift-left integration and
validation with simulation

Virtual vehicle and scenario
for automated driving

Flexible generation of SOA and
signal-based software

Reference workflow for
safety and security

Automate and integrate model-
based capabilities with CI

Key Takeaway:

MathWorks Solutions Accelerate Software-Defined Vehicle Development

	Title
	Slide 1

	Introduction
	Slide 2: Automotive Industry Transformation:
	Slide 3: Our Panel of Industry experts:
	Slide 4: What we are going to discuss:

	Mega Trends in Automotive Industry
	Slide 5: Mega Trends Driving the Evolution of Software-Defined Vehicles
	Slide 6: Under the hood of a Software Defined Vehicle What are the Distinguishing Features of a Software Defined Vehicle
	Slide 7: Under the hood of a Software Defined Vehicle Changing architectures: Consolidation of ECUs and high-performance compute
	Slide 8: Under the hood of a Software Defined Vehicle Hardware and software decoupling: middleware
	Slide 9: Under the hood of a Software Defined Vehicle Changing application software: Signal to service orientation
	Slide 10: Under the hood of a Software Defined Vehicle Vehicle can communicate to the cloud
	Slide 11: Developing SW for Modern Vehicles i.e., SDVs
	Slide 12
	Slide 13
	Slide 14: AUTOSAR Layered Software Architecture

	ADAS&SDV Workflows
	Slide 15: Automated Driving Algorithm Development
	Slide 16: Key subsystems of an automated driving system
	Slide 17: Key subsystems of an automated driving system
	Slide 18: Key subsystems of an automated driving system
	Slide 19: Key subsystems of an automated driving system
	Slide 20: Key subsystems of an automated driving system
	Slide 21: Key subsystems of an automated driving system
	Slide 22: Highway Lane Following
	Slide 23: Automated Driving Algorithm Development
	Slide 24
	Slide 25: How to decompose traditional application software compositions into services for Software Defined Vehicles applications?
	Slide 26: KPIT- Service-oriented arbitration of ADAS features with Model-Based Design
	Slide 27: Implement and Deploy Services
	Slide 28: Deploy, Control, and Instrument Software Applications on Linux Platform (Run-Time Environment)
	Slide 29: Decompose the Monolithic Applications to SOA
	Slide 30

	Virtualization
	Slide 31: Exploring Virtualization: The MathWorks Perspective
	Slide 32: Use case of virtualization on the cloud
	Slide 33: Virtualization
	Slide 34: Virtualization – Virtual ECU [vECU]
	Slide 35: General Motors Cuts Testing Time in Half by Simulating E-Drive System Approach Achieves 95% of Performance Targets Before Hardware Availability
	Slide 36: Virtual Validation- Requirements
	Slide 37: Creating scenarios from real world data
	Slide 38: Standard based testing given certification requirements
	Slide 39: Exporting from RoadRunner Scenarios to ASAM OpenSCENARIO for multiple driving simulators
	Slide 40

	Software Factories
	Slide 41
	Slide 42: DevOps building blocks for Embedded Production SW
	Slide 43: Continuous Integration for embedded production SW
	Slide 44
	Slide 45: DevOps building blocks for Embedded Production SW
	Slide 46: Scaling up with parsim on the Cloud Different cloud computing resources for different jobs

	Conclusion
	Slide 47: Our discussion
	Slide 48: Key Takeaway: MathWorks Solutions Accelerate Software-Defined Vehicle Development

