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Automotive Industry Transformation:
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Our Panel of Industry experts:

Nukul Sehgal
Application Engineering Team, 

Software-Defined Vehicles, 
Virtualization & DevOps

Dr. Rishu Gupta
Application Engineering Team, 

ADAS & Artificial Intelligence

Kiran K Kulkarni
Industry Manager
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What we are going to discuss:

Digital 
Transformation

Application 
Software 

Development

Virtualization
Software 
Factories
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Mega Trends Driving the Evolution of Software-Defined Vehicles

Automotive Industry is undergoing a profound 

transformation driven by convergence of various 

trends:

• Electric Vehicles (EVs) and Electrification

• Fundamental transformation with advancements in 

battery technology.

• Connected Cars and the IoT Revolution

• Safety, Predictive maintenance, and OTA updates.

• 5G technology

• Autonomous Driving and ADAS: Driving Smarter, Safer

• Investments in advanced sensor technology, AI and ML to 

improve safety and reliability.

• Enormous data generated from sensors and camera

• Sophisticated SW architecture.
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Under the hood of a Software Defined Vehicle

What are the Distinguishing Features of a Software Defined Vehicle

▪ 1: Changing architectures: Consolidation of 

ECUs and high-performance compute

▪ 2: Hardware and software decoupling: 

middleware

▪ 3: Changing application software: Signal to 
service orientation

▪ 4: Vehicle can communicate to the cloud

1

2

3

4

Why Software Defined Transformation?
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Under the hood of a Software Defined Vehicle

Changing architectures: Consolidation of ECUs and high-performance compute

▪ Conventional: Constrained by memory, Low 

speed communication, High development 

effort, Lack of scalability and reusability

▪ Software Defined Vehicle: Vehicle 

computer (high compute) and zonal 
computers, Combines domains, Scalable, 

reusable, High-speed ethernet

Source: Deloitte

Future

1
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Under the hood of a Software Defined Vehicle

Hardware and software decoupling: middleware

▪ Conventional: Hardware and software 

coupled

▪ Software Defined Vehicle: Hardware 

completely abstracted. Efficient 

communication from software functions

2
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Under the hood of a Software Defined Vehicle

Changing application software: Signal to service orientation

▪ Conventional: Static architecture, signal 

based communication

▪ Software Defined Vehicle: Service-Oriented 

Architecture is a software design principle 

that promotes modular, loosely coupled, 
and interoperable services.

3
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Under the hood of a Software Defined Vehicle

Vehicle can communicate to the cloud

▪ Conventional: V-Cycle Development

▪ Software Defined Vehicle: Faster cycles of 

development using DevOps. Features on 

demand.

4
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Developing SW for Modern Vehicles i.e., SDVs

Monolithic vs. Service Oriented App (SOA)
Bare Metal vs. Linux Target

Traditional vs. Virtual Validation Batch vs. CI/CD Automation
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Service Oriented Communication (SOC)

signal-oriented communication

- send data independent of needs

- high bus load

- not efficient

service-oriented communication

- send data dependent of needs

- low bus load

- more efficient

SOA Application Communication

SOA Application Interface Patterns
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Service Oriented Architecture (SOA) – How?

▪ SOA is used by multiple industrial standard middleware 

including:

– AUTOSAR Adaptive Platform

– DDS (Data Distribution Services)

– ROS (Robot Operating System)

Drivers / BSP / 

Hypervisor

LINUX

Adaptive AUTOSAR Stack

Application

SOC/HPCs
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AUTOSAR Layered Software Architecture

Components

Run-time

Basic Services

Hardware
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Automated Driving Algorithm Development

Algorithms

Perception Sensor Fusion

Planning Decision & Controls

Steering

Brakin g

Acceleration

Multidisciplinary Skills
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Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls
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Key subsystems of an automated driving system

Perception
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Key subsystems of an automated driving system

Sensor Fusion

Perception
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Key subsystems of an automated driving system

Learning Algorithms

Optimization

Sensor Fusion

Perception

Planning
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Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls

Steering

Braking

Acceleration
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Key subsystems of an automated driving system

Sensor Fusion

Perception

Planning

Controls
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Highway Lane Following

Environment 
(Sensors)

Algorithms
(perception, sensor fusion, planning)

Decision logic Controller
(Actuation commands)

Vehicle 

Dynamics

Metrics
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Automated Driving Algorithm Development

Algorithms

Perception Sensor Fusion

Planning Decision & Controls

Steering

Brakin g

Acceleration

Multidisciplinary Skills

Software

Code

C/C++

GPU HDL

Architectures

AUTOSAR

ROS DDS

Deployment
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Service-Oriented Architecture (SOA) Design

Describe SOA with 

System Composer Implement detailed 

components with 

Simulink

Generate code with 

Embedded Coder
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Identify and Analyze 
Services

Define Services and its 
interfaces

Define Service Contracts
Implement and deploy 

Services

How to decompose traditional application software compositions into services 

for Software Defined Vehicles applications?
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KPIT- Service-oriented arbitration of ADAS features with Model-Based Design

Link to the talk

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/images/events/automotive/de-mac-2023/service-oriented-arbitration-of-adas-features-with-model-based-design.pdf
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Implement and Deploy Services

▪ Each service need to be deployed as a 

standalone application, with its own 

artifacts including

– Code

▪ C++ Code

▪ ARA Stub 

– AUTOSAR interface descriptions

▪ Machine Manifest

▪ Execution Manifest

▪ Service Instance Manifest

Identify and 
Analyze 
Services

Define 
Services and 
its interfaces

Define 
Service 

Behavior

Implement 
and deploy 
Services
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Deploy, Control, and Instrument Software Applications on Linux Platform (Run-

Time Environment)
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Decompose the Monolithic Applications to SOA 

To decompose monolithic 

application components to 

services we need to :

▪ Identify the different 

components, functionalities, 

and dependencies

▪ Understand component 

interactions and execution 

order of the components 

Monolithic Application

SWC1 SWC2

SWC4SWC3

Service1 Service2

Service3
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SOA Architecture 

Model

Legacy

Model

Decompose the Monolithic Application 

2. Deploy each as service 

executables

1. Identify Service Components

Services

Technical Article - Migrating traditional automotive application compositions to AUTOSAR Adaptive services for Software Defined Vehicles

https://www.mathworks.com/company/newsletters/articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.htmlhttps:/www.mathworks.com/company/newsletters/articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html
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Exploring Virtualization: The MathWorks Perspective

ECU

Virtualization of 

ECU
Virtualization of complex 

Scenarios

Virtualization in 

the cloud
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Use case of virtualization on the cloud

Use case: Enable a new feature—Sport + mode—
that reduces the time taken by vehicle to 
accelerate from 0 to 60 mph (100 kph) per hour by 
10 percent.
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Virtualization

Hardware (Microcontroller)

OS
Low Level 

Drivers

Middleware

Application Software 

(ASW)

Hardware (Microcontroller)

C Abstraction

Application Software (ASW)

Runtime Environment (RTE)

OS

Services

ECU Abstraction CDD

AUTOSAR Runtime for Adaptive Application (ARA)

Virtual Machine / Hardware

Platform Foundation 

Functional Custers

POSIX 

PSE51/ 

C++ STL

OS Platform 

Services 

Functional 

Custers

Application Software (ASW) Cloud Services

Classic Embedded Controller
AUTOSAR Classic Platform AUTOSAR Adaptive Platform [HPC Controllers]

Vehicle/ Component Models 

[OR] 

Real Components/Vehicle

Virtualizing the ECU – 

VirtualECU

1

Virtualizing complex 

models - Virtual Vehicle 

& Components 

Supporting Cloud 

Workflows for 

Virtualization
2

3
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Virtualization – Virtual ECU [vECU]

Application 

Software (ASW)

Stubs 

(if necessary)

Type 1

Application 

Software (ASW)

Simulated
Middleware

Stubs 

(if necessary)

Type 2

Application 

Software (ASW)

Production
Middleware

Type 3

Simulated 

Drivers / OS

Application 

Software (ASW)

Production
Middleware

Type 4

Production OS/ 

Drivers

Simulated 

Hardware

Model-Based Design for 

traditional embedded 
development to SOA workflow 
for SDV, with Automated Code 

Generation

FPGA

CPU

GPU

PLC

FMI 3.0

- Simulink® as an integration platform

- Co-Exist with multiple integration platforms

- bring multiple virtual ECUs as FMUs (or) Model (or) C/C++ Code. 
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General Motors Cuts Testing Time in Half by Simulating E-Drive System
Approach Achieves 95% of Performance Targets Before Hardware Availability

Link

https://www.mathworks.com/company/user_stories/gm-virtual-ecus-accelerate-automotive-testing.html
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Virtual Validation- Requirements

Virtual Worlds

Scenes Sensors

Scenarios Dynamics
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Creating scenarios from real world data

Sensor data Virtual Scenario
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Standard based testing given certification requirements

Euro NCAP Scenarios Euro NCAP Report

Scenario Test manager

Test Suite for Euro NCAP® Protocols

AEB Test Bench

AEB

Test Name Road Type #

Car-To-Car Rear Stationary (CCRs) Straight 75

Car-To-Car Rear Moving (CCRm) Straight 55

Car-To-Car Rear Braking (CCRb) Straight 4

Car-to-Car Front Turn-Across-Path (CCFtap) Junction 9

Car-to-Car Crossing Straight Crossing Path 

(CCCscp)

Junction 25

Car-to-Car Front Head-On Straight (CCFhos) Straight 2

Car-to-Car Front Head-On Lane change 

(CCFhol)

Straight 2
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Exporting from RoadRunner Scenarios to ASAM OpenSCENARIO for multiple 

driving simulators
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Requirements

System or software  

Architecture

Detailed design

Implementation

System Integration 

and Test

Unit Testing

Verified and 

Validation system

Model-Based Design for Automated Driving
Systematic use of models throughout the development process

Simulink/ MATLAB

Requirements Toolbox

Simulink

System composer

MATLAB. Simulink, 

Automated Driving toolbox
Roadrunner

MATLAB coder, 

Embedded Coder

Automated Driving toolbox

Roadrunner 
Simulink Test

Automated Driving toolbox

Roadrunner 
Simulink Test

ADAS/ AD features (AEB, LKA, ACC, …)

Real world scenarios, Euro NCAP

Perception, Navigation, 

Sensor fusion, Controls

Hardware in Loop

Roadrunner 

Simulink Requirements
Simulink Test

Model in Loop

Software in Loop
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Goals of DevOps and Software Factory

Unites agile development with reliable operations

Goal: Reduce the time between committing a change 

and placing it in production, while ensuring high quality

Version 

Control 
System

Check-inUnit

Test

Review

Developer

Models/

Code

Release

Build

Quality

Gate

Integration

Test

Release

Goal: Repeatability, Faster delivery, Higher quality

DevOps

Software Factory
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OPERATE

DEPLOY

MONITOR

Operations

TEST

DEVELOP

BUILD

Development

DevOps building blocks for Embedded Production SW

Cloud

Desktop

Edge

System Simulation

MBSE  MBD

Code Generation

Model- and 

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration
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OPERATE

DEPLOY

MONITOR

Operations

TEST

BUILD

Development

Continuous Integration for embedded production SW

Cloud

Desktop

Edge

System Simulation

MBSE  MBD

Code Generation

Model- and 

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

DEVELOP
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Automated testing and codegen via Continuous Integration

Challenge: 

▪ Enable multiple engineers to simultaneously develop 

features in parallel, but can share and sync with the 

other colleagues

▪ Test application code while still in development, 

thereby creating a “fix-as-you-go” workflow

▪ Automate large scale testing and code generation 

when development  branches are merged to 

main/release branch

 

Solution:

Virtualize

Scale

▪ Componentize models and place them under 

source control

▪ Test at model level, application software level, 

and conduct MISRA C checks

▪ Setup non-interactive MATLAB on runner 

computer(s); and perform automated tests, 

codeGen, and report authoring tasks

Commit changed models/tests to git using Projects

> matlab -batch

Automated pipelines can be configured to run in a variety of 

environments, to meet your scaling needs

bBattMgmt

main

bVCU

https://www.mathworks.com/videos/new-ways-to-work-in-simulink-part-8-manage-projects-using-automation-and-source-control-1598859340479.html
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OPERATE

DEPLOY

MONITOR

Operations

TEST

BUILD

Development

DevOps building blocks for Embedded Production SW

Cloud

Desktop

Edge

System Simulation

MBSE  MBD

Code Generation

Model- and 

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

DEVELOP



4646Learn more: MATLAB on AWS, MathWorks Reference Architecture, MathWorks CloudCenter

Scaling up with parsim on the Cloud
Different cloud computing resources for different jobs

Running 1352 Simulations

~ 18  hours in series

~ 5.2 hours on Quadcore Laptop

~ 59 mins on an m5.12xlarge EC2 instance, 24 core

MATLAB

Parallel Computing Toolbox

MATLAB Parallel Server

GPU

Multi-core 
CPU

Running 1352 Simulations

~ 22.7 mins on 5 Worker machines, 120 cores

~17 mins on 10 Worker machines, 240 cores

Worker Machine = m5.12xlarge (24 cores)

MATLAB on AWS EC2

https://github.com/mathworks-ref-arch/matlab-on-aws
https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/alternates/non-interactive/MATLAB-BATCH.md
https://www.mathworks.com/videos/what-is-mathworks-cloud-center-1651472260634.html
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Our discussion

Digital 
Transformation

Application 
Software 

Development

Virtualization
Software 
Factories
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Shift-left integration and 
validation with simulation

Virtual vehicle and scenario
for automated driving

Flexible generation of SOA and 
signal-based software

Reference workflow for 
safety and security

Automate and integrate model-
based capabilities with CI

Key Takeaway:

MathWorks Solutions Accelerate Software-Defined Vehicle Development


	Title
	Slide 1

	Introduction
	Slide 2: Automotive Industry Transformation:
	Slide 3: Our Panel of Industry experts:
	Slide 4: What we are going to discuss:

	Mega Trends in Automotive Industry
	Slide 5: Mega Trends Driving the Evolution of Software-Defined Vehicles
	Slide 6: Under the hood of a Software Defined Vehicle What are the Distinguishing Features of a Software Defined Vehicle 
	Slide 7: Under the hood of a Software Defined Vehicle Changing architectures: Consolidation of ECUs and high-performance compute 
	Slide 8: Under the hood of a Software Defined Vehicle Hardware and software decoupling: middleware 
	Slide 9: Under the hood of a Software Defined Vehicle Changing application software: Signal to service orientation 
	Slide 10: Under the hood of a Software Defined Vehicle Vehicle can communicate to the cloud 
	Slide 11: Developing SW for Modern Vehicles i.e., SDVs
	Slide 12
	Slide 13
	Slide 14: AUTOSAR Layered Software Architecture

	ADAS&SDV Workflows
	Slide 15: Automated Driving Algorithm Development 
	Slide 16: Key subsystems of an automated driving system
	Slide 17: Key subsystems of an automated driving system
	Slide 18: Key subsystems of an automated driving system
	Slide 19: Key subsystems of an automated driving system
	Slide 20: Key subsystems of an automated driving system
	Slide 21: Key subsystems of an automated driving system
	Slide 22: Highway Lane Following
	Slide 23: Automated Driving Algorithm Development 
	Slide 24
	Slide 25: How to decompose traditional application software compositions into services for Software Defined Vehicles applications?
	Slide 26: KPIT- Service-oriented arbitration of ADAS features with Model-Based Design
	Slide 27: Implement and Deploy Services
	Slide 28: Deploy, Control, and Instrument Software Applications on Linux Platform (Run-Time Environment) 
	Slide 29: Decompose the Monolithic Applications to SOA 
	Slide 30

	Virtualization
	Slide 31: Exploring Virtualization: The MathWorks Perspective
	Slide 32: Use case of virtualization on the cloud
	Slide 33: Virtualization
	Slide 34: Virtualization – Virtual ECU [vECU]
	Slide 35: General Motors Cuts Testing Time in Half by Simulating E-Drive System Approach Achieves 95% of Performance Targets Before Hardware Availability
	Slide 36: Virtual Validation- Requirements
	Slide 37: Creating scenarios from real world data
	Slide 38: Standard based testing given certification requirements
	Slide 39: Exporting from RoadRunner Scenarios to ASAM OpenSCENARIO for multiple driving simulators
	Slide 40

	Software Factories
	Slide 41
	Slide 42: DevOps building blocks for Embedded Production SW
	Slide 43: Continuous Integration for embedded production SW
	Slide 44
	Slide 45: DevOps building blocks for Embedded Production SW
	Slide 46: Scaling up with parsim on the Cloud Different cloud computing resources for different jobs

	Conclusion
	Slide 47: Our discussion
	Slide 48: Key Takeaway: MathWorks Solutions Accelerate Software-Defined Vehicle Development


