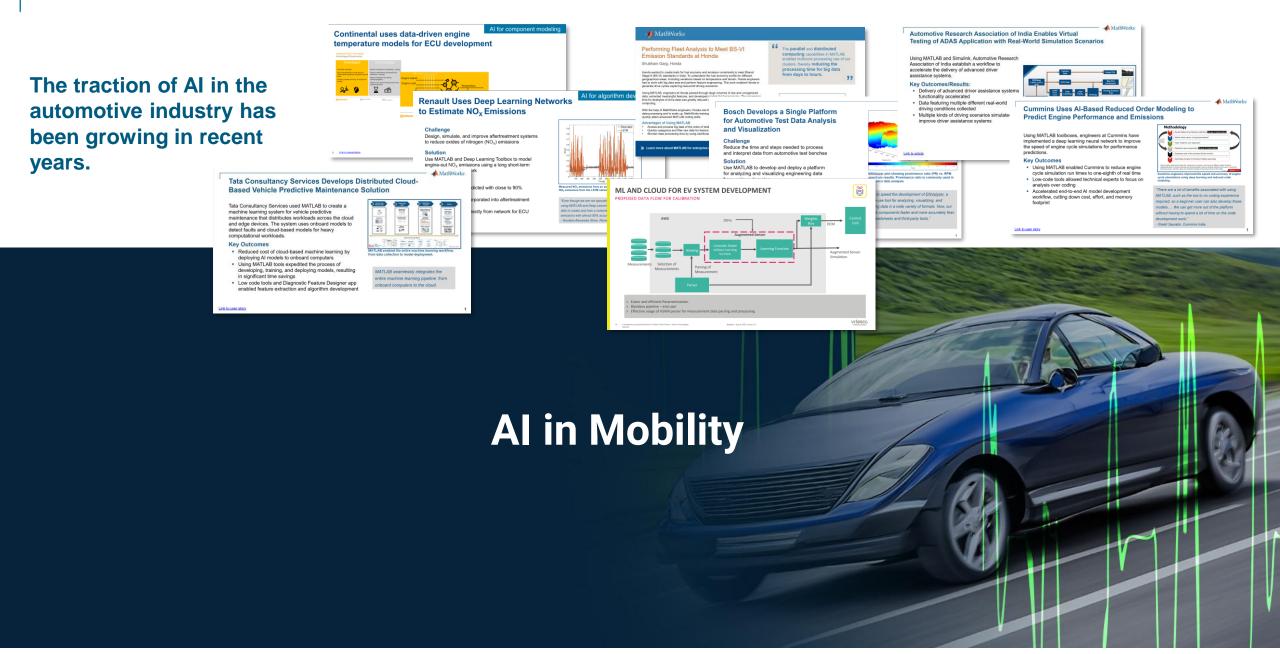
MathWorks **AUTOMOTIVE CONFERENCE 2024** India


19 November | Pune

Accelerating Al Adoption: From Design to Deployment in Mobility

© 2024 The MathWorks, Inc.

MathWorks AUTOMOTIVE CONFERENCE 2024

Core Technology Foundation

Specialized Talents

AI in Mobility

Jayanth Balaji Avanashilingam

Senior Application Engineer, MathWorks

Koustubh Shirke

Senior Application Engineer, MathWorks

Nikita Pinto

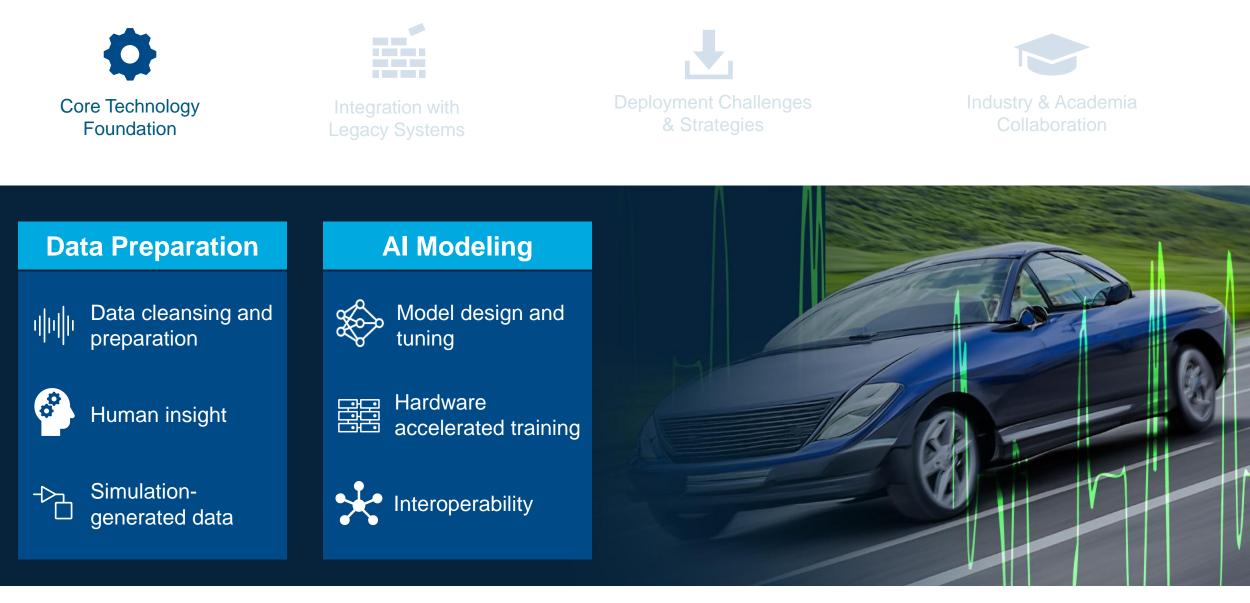
Senior AI Academic Liaison, MathWorks

Integrating AI is a priority for companies today but...

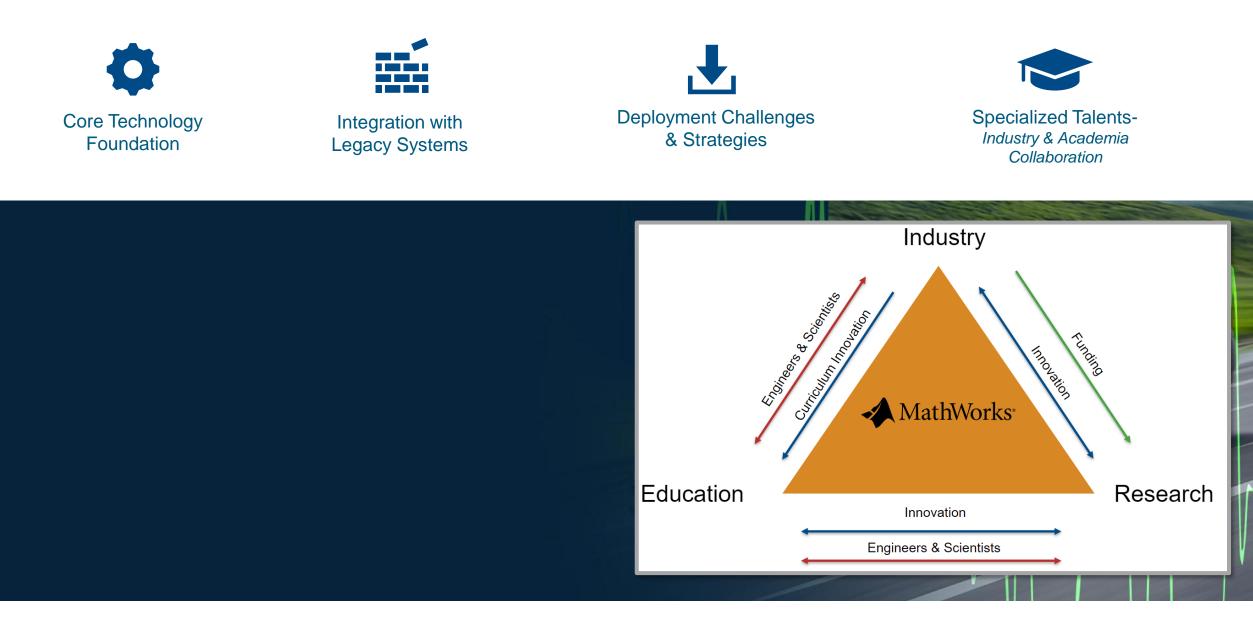
Top Barriers to Al Implementation

Unable/Hard to Measure the Value	119	6	30%
Complexity of Al Solution(s) Integration With	119	6	309
Data Volume and/or Complexity	8%	22%	
Potential Risks or Liabilities	7%	22%	
Data Scope or Quality Problems	6%	20%	
Lack of Understanding AI Benefits and Uses	6%	20%	
Lack of Technology Knowledge	5%	19%	
Data Accessibility Challenges	6%	19%	
ttle Improvement Over Existing Technologies	6%	18%	
Lack of Skills of Staff	7%	18%	
Technology Is Too Difficult to Use or Deploy	5%	17%	
Governance Issues or Concerns	5%	17%	
Lack of Capability to Leverage AI Techniques	6%	16%	
Difficulty Finding Use Cases	5%	15%	
Unable/Hard to Measure the Value	3%	14%	
0%		15%	30%
= 601 All Respondents, excluding "not sure." What are the top 3 barriers to the implementation of AI technique urce: 2020 Gartner AI In Organizations Survey	as within your organization	7	
9012_C			
			Gartne

n = 601


Gartner Research Circle members, excluding "unsure" Source: 2020 Gartner AI in Organizations Survey Q: What are the top three barrier to the implementation of AI techniques within your organization? *Rank up to three.* ID: 719012 C

10012_0


- Source: "" How to Build Knowledge Graphs That Enable AI-Driven
- Enterprise Applications" Gartner Research Note, <D#>, published 27 May 2020

Top barriers to successful adoption of AI

- 1. Integration with existing technology
- 2. Data Complexity/Quality
- 3. Lack of Skills

Core Technology Foundation	Integration with Legacy Systems	Deployment Challenges & Strategies	Industry & Academia Collaboration
Data Preparation	Al Modeling	Simulation & Test	Deployment
االالالالالالالالالالالالالالالالالالا	Model design and tuning	Integration with complex systems	Embedded devices
Human insight	대대 Hardware 고급 accelerated training	System simulation	Enterprise systems
-D Simulation- generated data	Interoperability	 × System verification and validation 	Edge, cloud, desktop

Typical Data Driven Workflow

Domain Experts

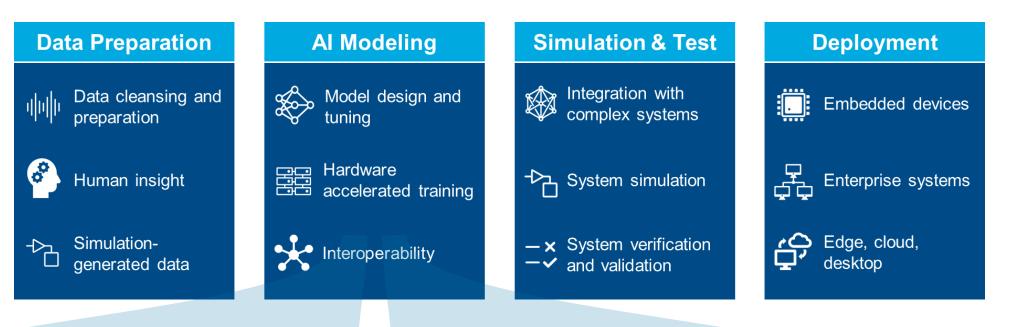
From data to deployment, overseeing

the entire AI workflow in MATLAB

From data preparation to deployment

Embedded Software Engineers

Implementing and optimizing AI models on edge hardware, collaborating seamlessly with data science teams


Data Preparation

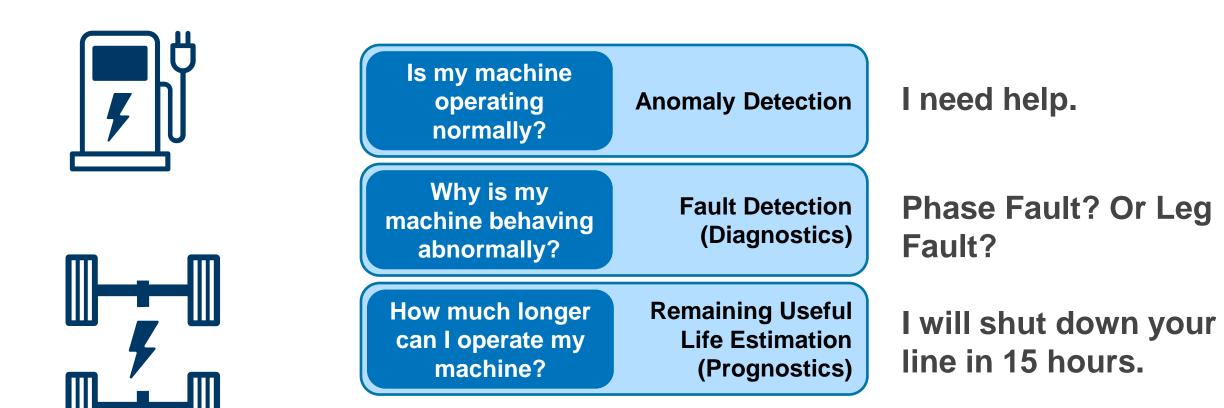
Deployment

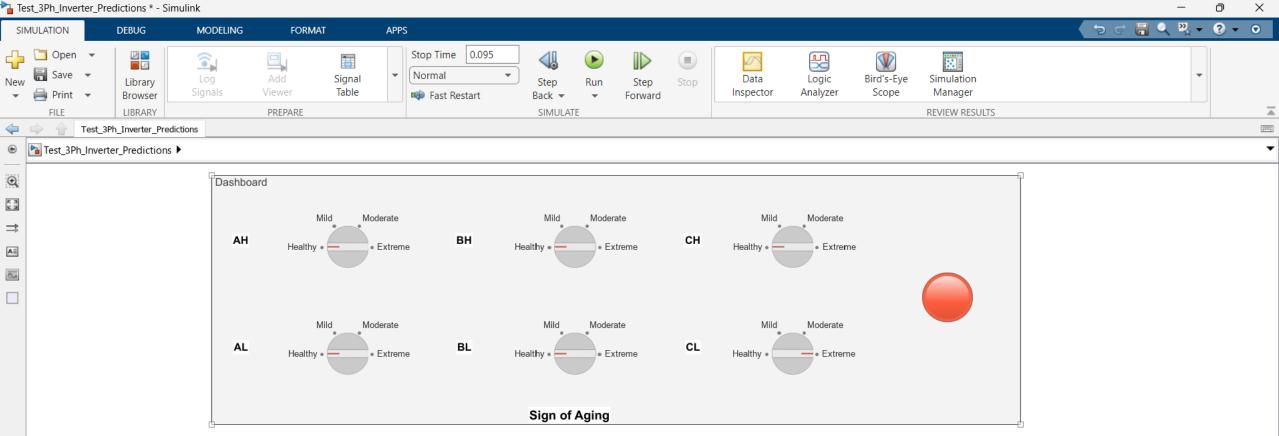
Leveraging AI-driven Automotive Application design

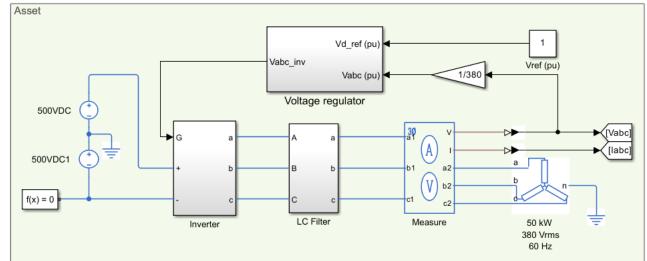
AI for component modeling

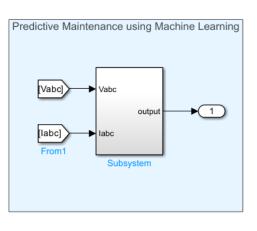

- Speeding up desktop and HIL simulations
- Modeling component dynamics from data when first-principles models cannot be obtained

Al for Algorithm development


- Virtual sensor modeling
- Sensor fusion
- Object detection
- Remaining Useful Life Estimation/Predictive Maintenance


Leveraging Data Driven Application Software Development


Power Converters: Driving the Future of Electrification



Predictive Maintenance of Power Converters

Three-Phase Inverter Voltage Control

Daihatsu Uses AI to Classify Engine Sounds

Challenge

Develop an AI solution that can judge the level of engine knocking sound, which only skilled workers could judge

Solution

Create classification models and easy-to-use interface with MATLAB, making it possible to examine features multiple times

Key Outcomes

- Performed knocking sound analysis with the same accuracy as skilled workers
- Increased AI expertise through MATLAB training
- Promoted visualization of AI and increased awareness of AI

Daihatsu used AI to identify knocking sounds from its engines.

"Although we tried other programming languages, it was hard to implement. We decided to use MATLAB, which allows us to easily import the necessary data by dragging and dropping, and we could easily see the result by ourselves."

- Takuya Kumagae, Daihatsu Motor Co., Ltd.

Challenges in AI Model Development

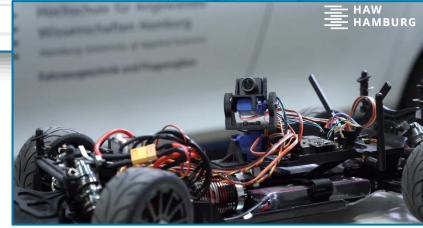
Accuracy	Balancing precision with real-world applicability
Development Time	Time to market
Effective Testing	Ensuring reliable model behavior
Compatibility	 Integration with the production systems
Maintainability	Efficient model updating
Robustness	Maintaining consistent performance in diverse situation
Latency	Meeting real-time processing

Hands-on learning: IIT Madras and HAW Hamburg

Dr. V Krishna Teja Mantripragada (He/Him) • 1st Tyre & Vehicle dynamics, JK Tyres | Adjunct Faculty, IIT Madras 2w • Edited • 🔇

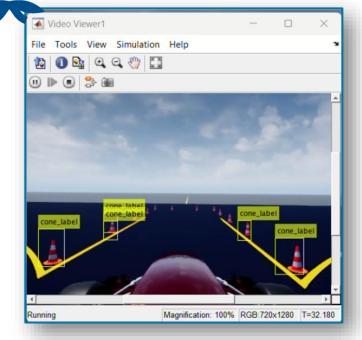
Hey Automotive Enthusiasts!

Ever wondered about so many buzz words in suspension tuning that makes your vehicle ride and handling smooth...


Here is a simple <u>#MATLAB</u> app that I created during my university days for quickly visualising McPherson suspension and calculating some important metrics. The app can be downloaded from Mathworks FileExchange

https://lnkd.in/gNfudcN6

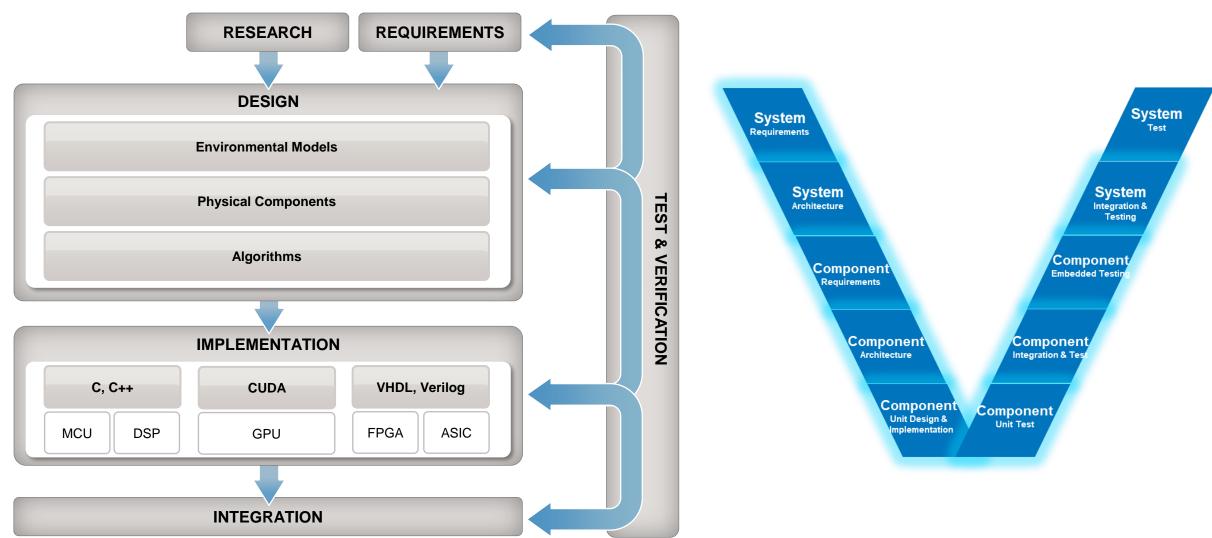
Feel free to customise as needed! Share your insights on suspension optimization and tuning experiences...

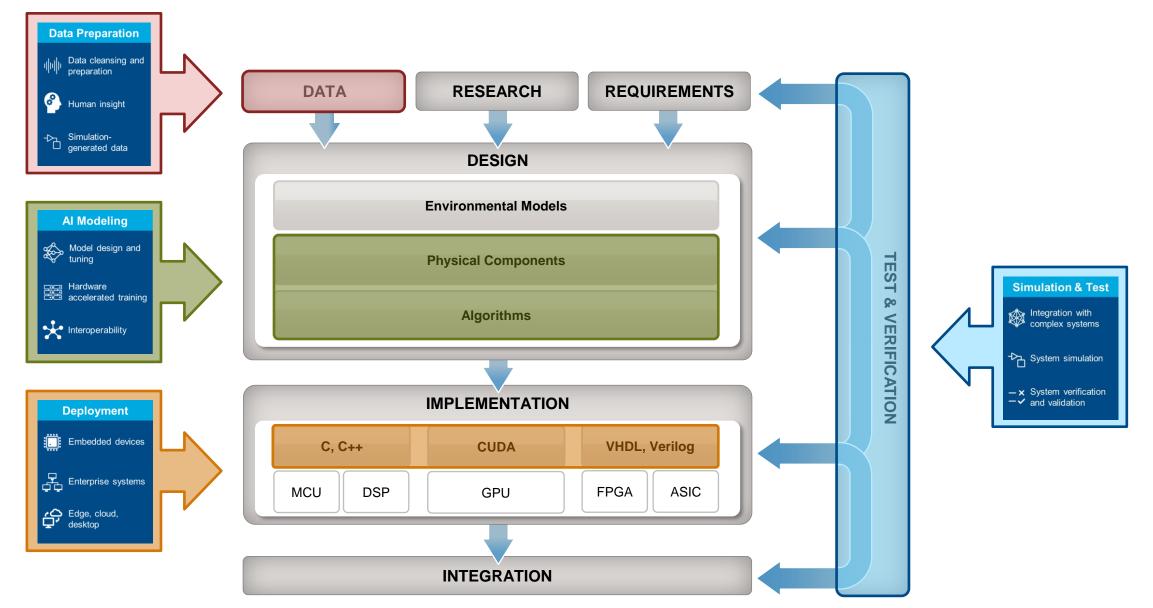

#AutomotiveEngineering #vehicledynamics #engineering #design #vehicledesign #students #formulastudent #modelling #simulation

	n Struct Kinematics - Static	
Tire		1
215	80 R. 17	
nard Points (Points to measured in asie trame of re	instos)	2.6
ref - Reference point ((error of axis)	X (m) 0.0000 x Y (m) 0.0000 x Z (m) 0.5455 x	N 24
et - Carrier Upper Pont	X (m) 4.0250 + Y (m) 0.6650 + Z (m) 0.16651 +	82
r2 - Carrier Lower Point	$X\left(m\right) = \left[\begin{array}{c} 0.0275 \left[\frac{m}{4} \right] \\ \end{array} \right] Y\left(m\right) = \left[\begin{array}{c} 0.7900 \left[\frac{m}{4} \right] \\ \end{array} \right] Z\left(m\right) = \left[\begin{array}{c} 4.2000 \left[\frac{m}{4} \right] \\ \end{array} \right]$	0
lw1 - lower webbone (inner point) ilm to chasse	X (m) 4 0390 + Y (m) 0 3930 + Z (m) 4 0795 +	0.0
hall - lower webbore (sular port) link to chaosis	X (m) 0.2000 2 Y (m) 0.0000 2 Z (m) 4.0010 2	04 13 13 1
str - link with be roll of steering system	X (m) 0 1000 1 Y (m) 0.000 1 Z (m) 0 000 1	y 0 3 25 x
rs He rod link with alweing rack body	X (m) 0.1700 + Y (m) 0.9900 + Z (m) 0.0000 +	
all - senter of stamper upper list with chassis	$X_{(00)} \begin{bmatrix} 4.0580 \left[\frac{1}{42} \right] & Y_{(00)} \begin{bmatrix} 0.0595 \left[\frac{1}{42} \right] & Z_{(01)} \end{bmatrix} \begin{bmatrix} 0.0595 \left[\frac{1}{42} \right] \end{bmatrix}$	YZYbw
ulti - Wheel center	X (m) 0.0000 + Y (m) 0.7940 + Z (m) 0.0000 +	
top - The contact point	X (m) 0.0000 + Y (m) 0.7940 + Z (m) -0.9449 +	

...

Student competitions – <u>TUM at the Indy</u> <u>Autonomous Challenge</u>

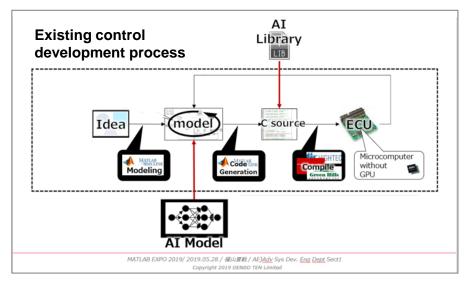




Audience Question

Application Development workflow with Model-Based Design

Integrating AI in Model-Based Design


Use AI to improve engine control unit development efficiency

DENSO TEN

- Used Deep Learning to formulate a model for complex vehicle control issues
- Applied model-based development to integrate AI model into existing control model
- Developed a pathway to c-code generation for ECU implementation

"A model-based development workflow is essential in order to use AI for control ECUs. Combining the existing control model and the AI model enables us to establish a simulation environment and accelerate product development." - Natsuki Yokoyama, Denso Ten

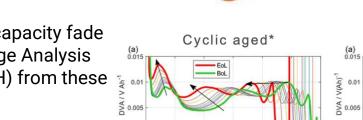
Model-Based Development Workflow

Verification and Validation of AI Model

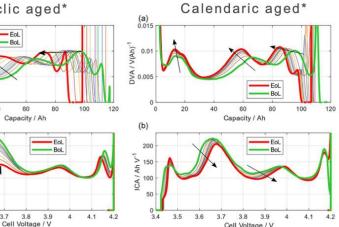
Model-Based Design	Al Models
Ensuring algorithms represent the intended physical or logical system accurately	Verifying model training aligns with intended objectives. Explainability Rigor & Trust
Errors stem from incorrect logic, parameter values, or design mistake.	Explainability Rigor & Hust Er ors may arise from data quality hyperparameters, or learning process
Ensure the system performs as intended under real-world scenarios	Ensure the AI model generalizes well to unseen data and meets real world recomments Robustness
Relies on diverse and representative datasets for validation	Uses predefined scenarios design requirements and physical constraints
	Ensuring algorithms represent the intended physical or logical system accurately Errors stem from incorrect logic, parameter values, or design mistake. Ensure the system performs as intended under real-world scenarios Relies on diverse and representative

Developing Onboard SOH Estimation Using DVA and ICA for LFP Batteries

Challenge


Li-on Batteries suffer from a variety of degradation mechanisms that lead to either capacity fade or power fade. Techniques like Incremental Capacity Analysis and Differential Voltage Analysis can be used to estimate DQ and DV curves but inferring battery State of Health (SOH) from these curves still requires domain expertise.

Solution


Gotion used MATLAB to develop feature extraction methods that detect the most important features in DQ and DV curves, then trained a linear regression model that correlates these features with capacity fade. This regression model was then used alongside temperature data in a 2-D look-up table that estimates SOH. The solution was implemented in Simulink for testing, requirements validation, and certification.

Benefits of using MATLAB and Simulink

- Easy data analysis for visualization and identification of key trends in battery aging
- Built-in tools to extract meaningful features from differential voltage curves (peak detection)
- V-diagram workflow support including requirements management, automatic code generation, and ISO 26262/IEC 61508 certification

(b)

Gotion

Link to MathWorks Automotive Conference slides Link to MathWorks Automotive Conference recording

There is an increased focus in government **regulation and certification** efforts

Automotive

ISO/CD PAS 8800

Road Vehicles — Safety and artificial intelligence

Under development A draft is being reviewed by the committee.

Aerospace

Process Standard for Development and Certification/Approval of Aeronautical Safety-Related Products Implementing AI ARP6983

This document discusses guidelines for the development of Aircraft Systems leveraging Al capabilities, taking into account the overall aircraft operating environment and functions. This includes validation of requirements and verification of the design implementation for certification and product assurance and guidelines with the assessment of safety. It provides practices for showing compliance with the regulations and serves to assist a company in developing and meeting its own internal standards by considering the guidelines herein.

-/V-Medical Devices

← <u>Software as a Medical Device (SaMD)</u>

Artificial Intelligence and Machine Learning in Software as a Medical Device

May 13, 2024 update: 191 Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices were added to the list below. With this update, the FDA has authorized 882 AI/ML-enabled medical devices. Of those newly added to the list, 151 are devices with final decision dates between August 1, 2023, and March 31, 2024, and 40 are devices from prior periods identified through a further refinement of methods used to generate this list.

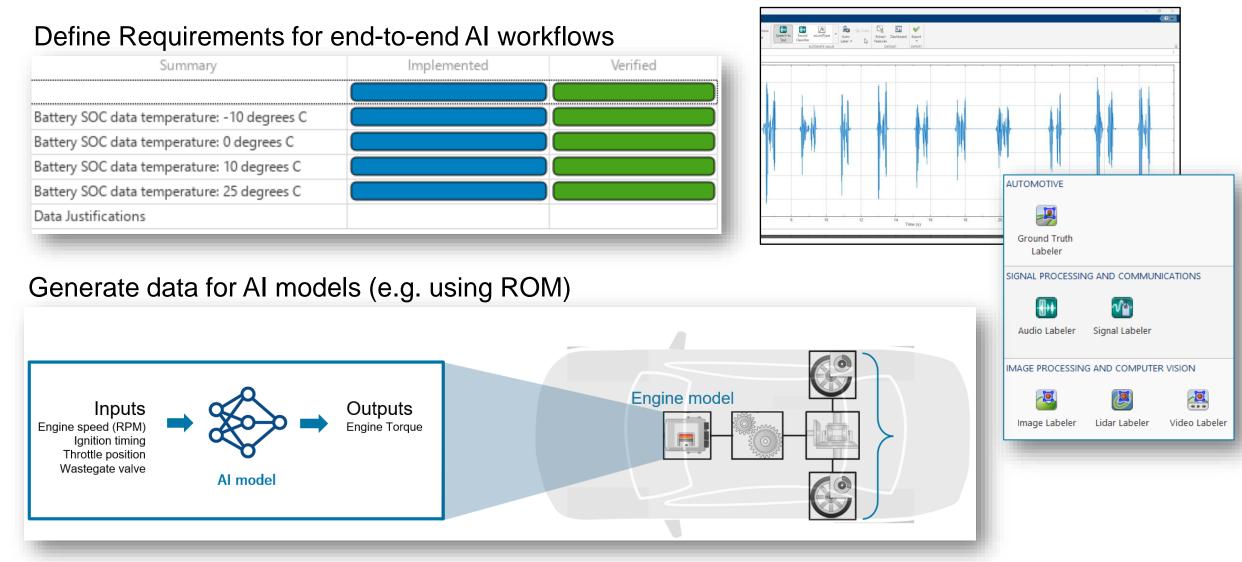
European Parliament

WIP 2023-06-26

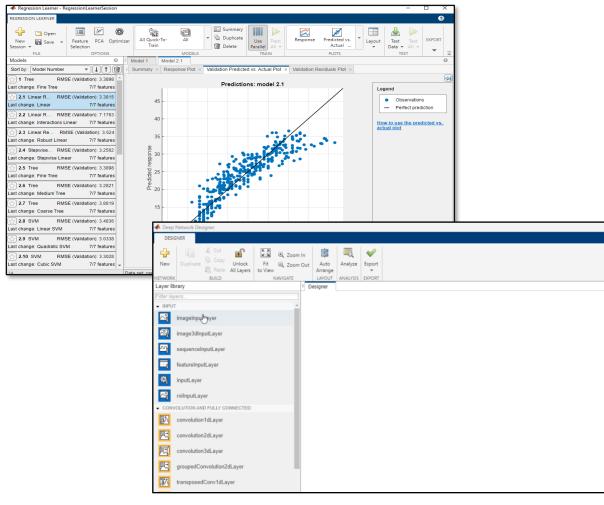
2019-2024

TEXTS ADOPTED

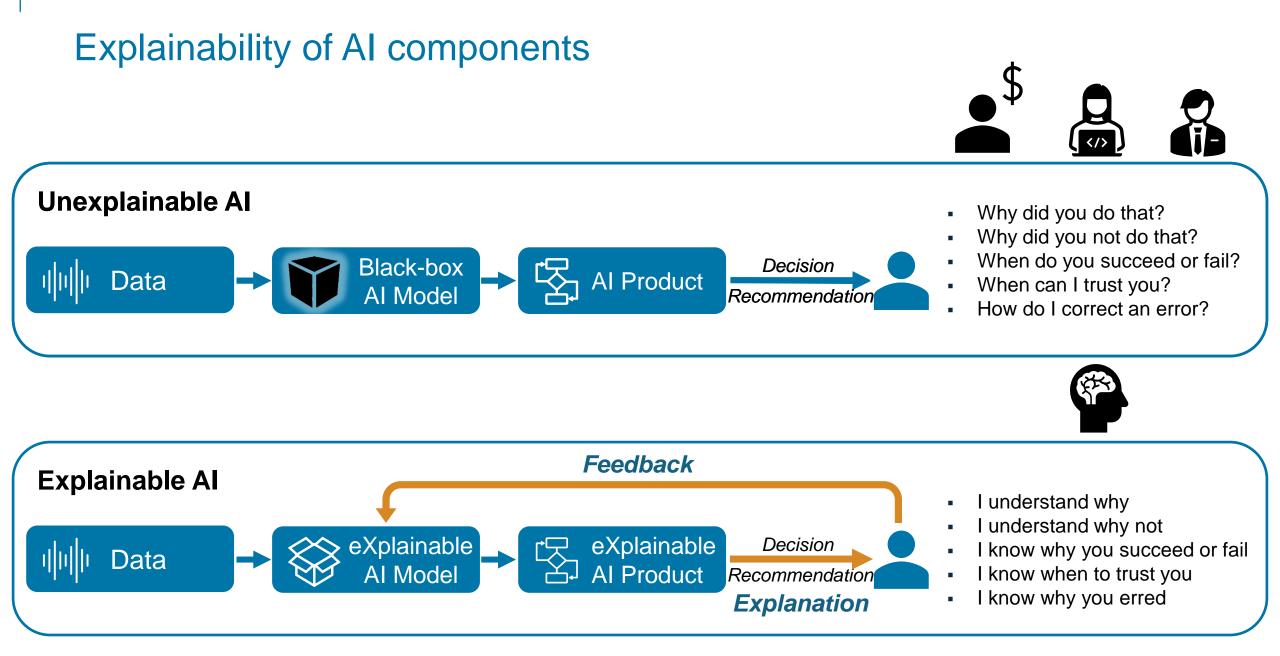
P9_TA(2024)0138


Artificial Intelligence Act

European Parliament legislative resolution of 13 March 2024 on the proposal for a regulation of the European Parliament and of the Council on laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union Legislative Acts (COM(2021)0206 - C9-0146/2021 - 2021/0106(COD))


Requirements and Data Management

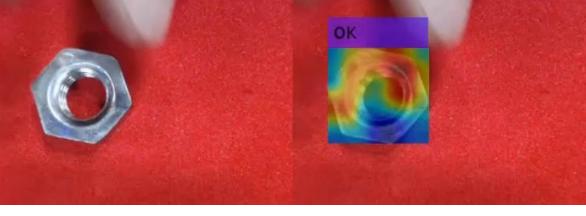
Automate Data Labeling


Learning Process - AI Modeling, Hyperparameters & Experimentation

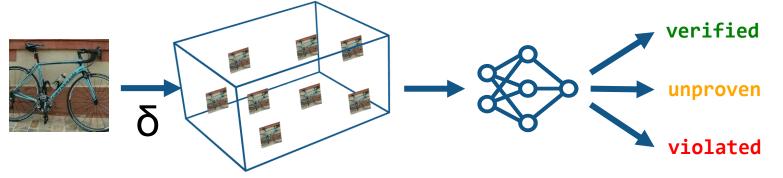
Design & Train Deep Learning, Machine Learning models

Experiment over models, hyperparameters

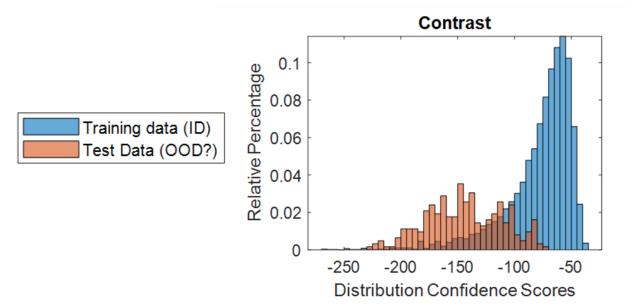
Svere Layout Cluster Stop Training Confusion Filter Amotations Export Doplicate Development Elecution Ruit Ruit Filter Amotations Export	ENT MANAGER											0
Experiment *Exhaustive Sweep Reult 20 Trails Peckatt (Runny) *Exhaustive Sweep Reult 20 Trails 20 Trails Visualization of digits, using various initial learning rates. © Compile 2 Running 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nent Browser	Layout VIRONMENT	Cluster	Stop Training EXECUTION RUN REVIEW	Confusion Matrix 💌	Filter Annotations E	kport					c
Perentrit Realt (Runny) Propriment1 Use Extended digs, using various initial learning rates Propriment1 Use Extended digs, using various initial learning rates Propriment1 Pro		Project	▼ Exha	ustive Sweep Result								
Difference December 1 Succo Clear Stratus												O/C Trials
Trial Status Actions Progress Expeed Time myInitialLearMiste Training Locus Validation Locs 1 © Complete (flax epochs completed) 100 0% 0/r 4 min 17 sec 0.0025 100.0000 0.0232 61.5000 1.393 2 © Complete (flax epochs completed) 100 0% 0/r 4 min 17 sec 0.0025 100.0000 0.0232 61.5000 1.393 3 © Raming 0.0037% 0/r 4 min 17 sec 0.0025 0 0.0025 0.011 0.012 0.012 0.012 0.011 0.012 </th <th>E Result1 (Ru</th> <th>nning)</th> <th>(View</th> <th>Experiment Source)</th> <th>ıg rates.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Error 0</th>	E Result1 (Ru	nning)	(View	Experiment Source)	ıg rates.							Error 0
2 Complete (Max epochs completed) 100 0h 0 tr 4 min 34 see 0.0598 100.0800 0.0226 61.5600 1.198 8 Running 9 20 25 0 tr 1 min 7 sec 0.0015 0			Trial	Status	Actions	Progress	Elapsed Time	myInitialLearnRate	Training Accuracy (%)	Training Loss	Validation Accuracy (%)	
B C Running B 30.7% Ohr 1 mm 24 see 0.8075 4 C Running B 28.25% Ohr 1 mm 7 sec 0.8180 Image: Control of the second			1	Complete (Max epochs completed)		100.0%	0 hr 4 min 17 sec	0.0025	100.0000	0.0714	57.9600	1.393
# Deaming # 28.2% O ht 1 min 7 sec 0.8128 6 E Owned # 0.0% 0.8125 0 6 E Owned # 0.0% 0.8125 0 7 Visualizations C C C			2	Complete (Max epochs completed)		100.0%	0 hr 4 min 34 sec	0.0050	100.0000	0.0326	61.5600	1.398
5 E Queed H 0.0% 0.8125 I 6 E Queed H 0.0% 0.8158 I I Visualizations Training Piet (Trial 3. Resultit. Experiment) 000/6 0			3	O Running		30.7%	0 hr 1 min 24 sec	0.0075				
Image: Constraint of the second of			4	O Running		26.2%	0 hr 1 min 7 sec	0.0100				
Visualizations (Visualizations (Training Piot (Trial 3, Result), Experiment()			5	E Queued	×			0.0125				
Training Piot (Trial 3, Result). Experiment)			6	E Queued	×	0.0%		0.0150				
			Training Plot (Trial 3, Result), Experiment)									
			0		20	30	40	50		70	80 90	100


Musashi Seimitsu Industry Uses Deep Learning for Visual Inspection of Automotive Parts

How XAI was used: Estimate and visualize the defect area using Class Activation Mapping

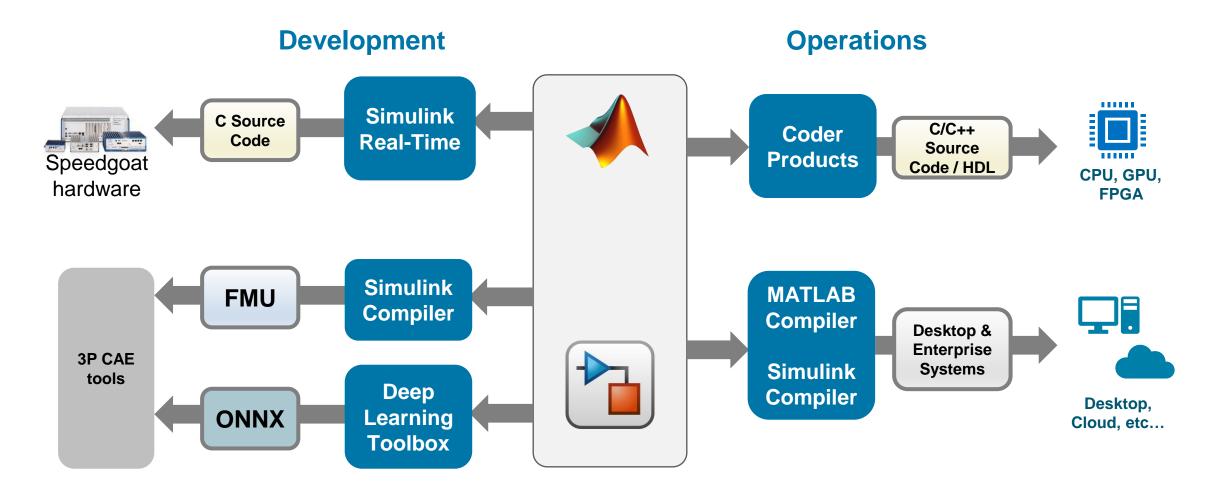

Using camera connection, preprocessing, and various pretrained models in MATLAB enabled us to work on the entire workflow. Through discussions with consultants, our team gained many tips for solving problems, growing the skills of our engineers.

Class Activation Mapping



Robustness and Out of Distribution Detection

Is the AI model robust against small input changes?


Can the AI model reliably detect unknown samples?

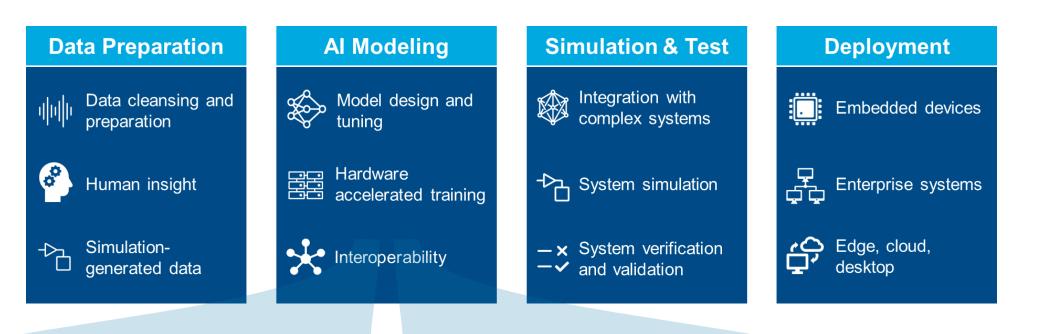
Deep Learning Toolbox Verification Library by MathWorks Deep Learning Toolbox Team **STAFF** Verify and test robustness of deep learning networks

Deploy to your choice of embedded hardware, or integrate with a variety of platforms in the cloud

Operationalize Embedded AI with On-Device Learning

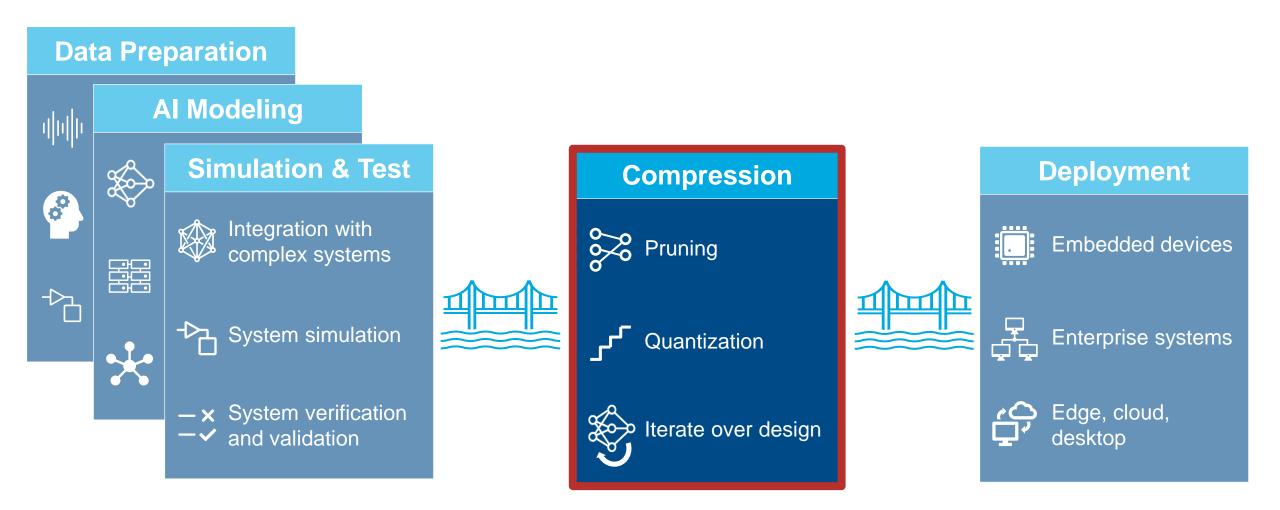
Domain Experts From data to deployment, overseeing the entire AI workflow in MATLAB

Embedded Software Engineers

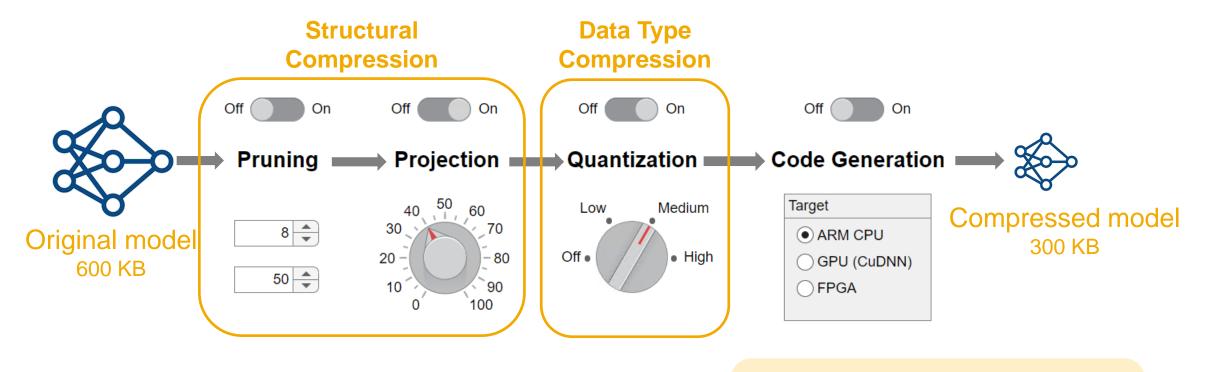

Implementing and optimizing AI models on edge hardware, collaborating seamlessly with data science teams

Workflow for Embedded AI

Leveraging Al-driven Automotive Application design


AI for component modeling

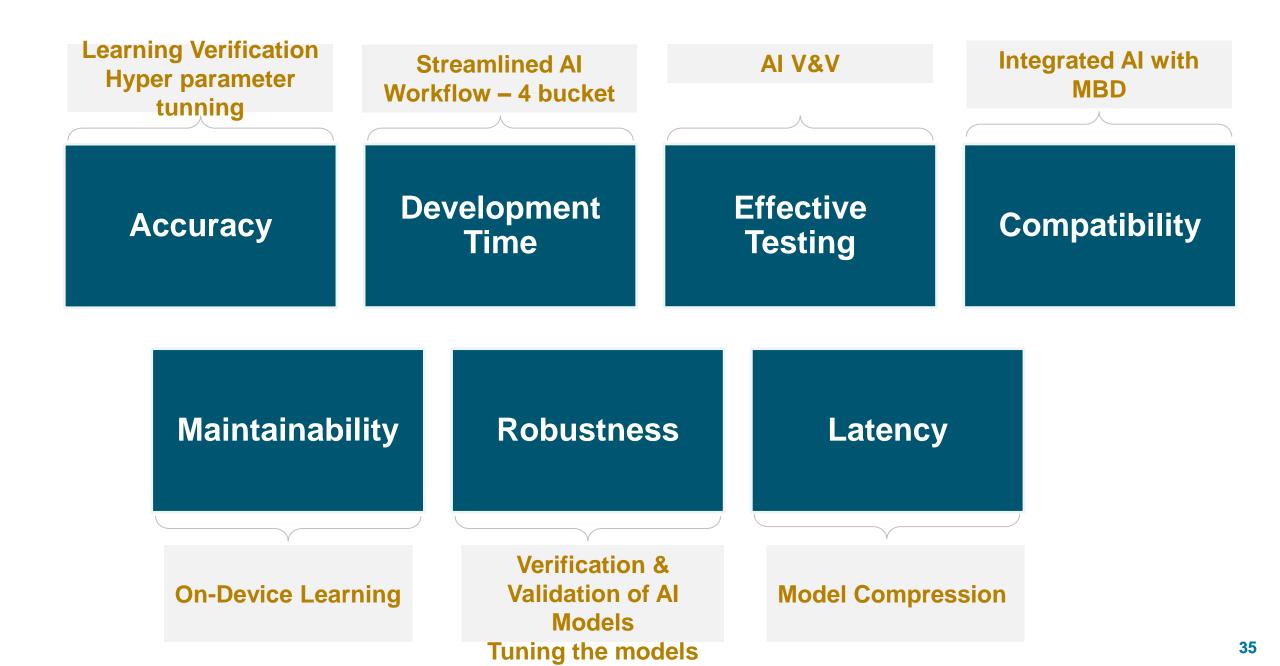
- Speeding up desktop and HIL simulations
- Modeling component dynamics from data when first-principles models cannot be obtained


Al for Algorithm development

- Virtual sensor modeling
- Sensor fusion
- Object detection
- Remaining Useful Life Estimation/Predictive Maintenance

Leveraging Data Driven Application Software Development Model compression can bridge the gap between AI modelling and embedded deployment

Reduce model footprint and accelerate inference of DL models for deployment to the edge


"original [network] was 40MB, was told needed to be **less than 10MB to fit**."

"model is 600kb and want to **reduce it to 300kb**. if I'm not fitting it in, I don't have a working solution"

Challenges in AI Model Development

Accuracy	Learning VerificationHyper parameter tunning
Development Time	 Streamlined AI Workflow – 4 bucket
Effective Testing	• AI V&V
Compatibility	Integrated AI with MBD & Deployment portfolio
Maintainability	On-Device Learning
Robustness	Verification & Validation of AI ModelsTuning the models
Latency	Model Compression

Industry-Academia initiatives

CONTRACT OF	Continental
CALL OF	1,698,549 followers
	1mo • 🕥

+ Follow

At Continental, we believe in the power of partnerships to shape the future of mobility. Our collaboration with Amrita Vishwa Vidyapeetham and MathWorks reflects our commitment to bridging the gap between academia and industry, ensuring that future engineers are equipped with both cutting-edge knowledge and industry readiness.

Through the Automotive Systems and Layered Architecture course, students gain exposure to advanced automotive technologies such as **#AUTOSAR**, a critical standard in the **#industry**. By combining academic expertise with Continental's industry insights, we are creating an environment where students can develop the skills needed to address real-world challenges in automotive engineering.

This **#partnership** is not just about **#education** —it's about creating future-ready professionals who will lead the way in innovation. We are proud to support initiatives like this that empower the next generation, preparing them for the dynamic demands of the **#automotive** world.

#Collaboration and #innovation are smarter, safer #future for mobility at Bosch and National Institute of Technology Calicut Collaborate on EV Course to Prepare Students for Industry

#ContinentalIndia #India #bangalore Challenge

Address the shortage of automotive engineers with system engineering skills

Solution

Jointly create a new undergraduate course in model-based system engineering as part of a collaboration between academia and industry

Results

- Months of on-the-job training eliminated
- Enrollment increased by 250%
- 90%+ positive feedback received

Pradeep Kumar of Bosch India lighting the ceremonial lamp with Dr. Sivaji <u>Chakravorti</u> of NIT Calicut before signing the agreement.

"The collaboration between NIT Calicut, MathWorks, and Bosch narrowed the gap between academia and industry, producing an electric vehicle system engineering course that has been both well received by our students and highly useful for them as well." - Dr. Kumaravel Sundaramoorthy, NIT Calicut

Upcoming course on SDV

Course Outcomes:

By the end of this course, students will be able to:

1. Understand the architecture and evolution of software-defined vehicles and their role in the automotive industry.

2. <u>Analyze</u> the components, systems, and communication protocols central to software-defined vehicles.

3. Apply software development and validation techniques specific to automotive applications.

4. Explore trends and emerging technologies shaping the future of software-defined vehicles.

Module 1: Introduction to Software-Defined Vehicles

Definition, significance, SDVs - Evolution, automotive technology, softwarecentric systems - Software-defined architecture - vehicle design, functionality **Module 2: Fundamentals of SDV Architecture and Components**

SDV architecture, embedded systems, ECUs - Software platforms, methodologies, SDVs - Software development lifecycle (SDLC) - automotive engineering

Module 3: Communication, Connectivity, and ADAS in SDVs

V2V, V2I, V2X communication - In-vehicle networking, CAN, Ethernet -Advanced Driver Assistance Systems (ADAS) - key features - autonomous driving **Module 4: Software Development, Validation, and Future Trends**

Software development, validation, testing, simulation, ISO 26262 - Case studies, practical implementations - Future trends, OTA updates, cloud-based platforms and Role of AI in SDVs

Bosch and National Institute of Technology Calicut Collaborate on EV Course to Prepare Students for Industry

Key Summary...

Key Summary...

Audience Question