MathWorks AUTOMOTIVE CONFERENCE 2024

Building Confidence through Design in Al-driven Engineered Systems

Avinash Nehemiah, MathWorks

Applications of **Al in automotive** industry

Top questions and concerns

5 techniques to **build confidence** through design

The use of AI for engineered systems in Automotive continues to grow

(KPIT) Virtual Sensor

Battery SOC and SOH Estimation using a Hybrid Machine Learning Approach

(Subaru) ROM

AI ROM to decrease time for Transmission Control system analysis

(APTIV) Data Generation Converting test data to simulation using AI

3

Questions and concerns we need to answer to build confidence

- 1. Are we using the best available <u>AI model</u>?
- 2. How can we test impact of adding AI-based component to my system design ?
- 3. Do I have enough **<u>compute and memory</u>** to use an accurate AI model ?
- 4. Is it possible to **verify and validate** the AI model ?
- 5. Can I use my **target hardware** during development?

System-level Simulation

Memory and Execution Time

Verification and Validation

Testing on Hardware

Today we'll focus on Virtual Sensor modeling use case

A Virtual Sensor mimics a physical sensor using data from other measurements to estimate the quantity of interest

Why are virtual sensors relevant ?

A physical sensor may be:

- Expensive
- Slow
- Noisy
- Unreliable
- Not feasible
- Unmanufacturable
- Degrading over time
- Requiring redundancy
- etc.

Al Virtual Sensor for Battery State-of-Charge Estimation

Questions and concerns we need to answer to build confidence

AI Modeling

System-level Simulation

Memory and Execution Time

Verification and Validation

Testing on Hardware

5 keys to building confidence

Two ways of leveraging AI in MATLAB and Simulink

Build, run, or fine-tune models locally

Create a white-box model from scratch in MATLAB

DES	SIGNER											?
	Duplicate Copy Duplicate Paste	Fit C Zoom In Fit Zoom Out to View NAVIGATE	t Auto Arrange LAYOUT	Analyze Ex	¢port							Ā
Layer	Library				Designer	Data	Training		0	Properties	25	
Filter I	layers								_	regre	essionLaver (2)	
	roiMaxPooling2dLayer			^				featureinput		rogic		
	roiAlignLayer							featureInputLayer	r l	Name	regressionoutput	
	MBINATION									LossEunction	mean-squared-error	
÷	additionLayer									cossi diredon	incur-square-en-si	
A	depthConcatenationLay	er						1				
	concatenationLayer							fc				
\approx	multiplicationLayer					h.		fullyConnected				
→ OB.	JECT DETECTION											
	regionProposalLayer											
	yolov2ReorgLayer							· · ·				
88	yolov2TransformLayer							relu aver				
	anchorBoxLayer											
Ø	ssdMergeLayer											
- OU	TPUT							4				
lil.	softmaxLayer							fc				
Ľ	sigmoidLayer							fullyConnected				
2	classificationLayer											
22 ²⁴⁴	regressionLayer											
dia ita ha adi	rpnSoftmaxLayer			- 1								
-	rcnnBoxRegressionLaye	ēr -								Overview	v	
2	rpnClassificationLayer											
2	pixelClassificationLayer											
2	dicePixelClassificationL	ayer							_			
	yolov2OutputLayer							regressionout				
2	focalLossLayer							regressionLayer				
												►

Low Code Al Model Development

Programmatically create model in MATLAB

HOME		PLOTS APPS	LIVE EDITOR	INSERT	VIEW									14 1 19 6	E ? 🛛 S	earch Documentatio	on 👂 🌲	Sign In
	Save	© Compare → Print ▼ Go To		Aa Normal → B I U M	Code C	ontrol Task	Run	🖹 Section Break	Bun	Step Sto	ID.							
• •	-	Export •	Bookmark -			• • • • • •	Section	n Part Run to End		DUN								-
<> ⇒ 🖬 🔓		🗀 / 🕨 home 🕨 Igarcia	a ▶ ai-with-mbd-virtual-	sensor-modeling +	Part 1 - Al M	lodeling >		JEC HON		Nora								م •
🖬 Live Edit	or - /h	iome/lgarcia/ai-with-	mbd-virtual-sensor-m	nodeling/Part 1 - A	l Modeling	/SOC_2_ImportFromTens	orflow.mb	x *										⊙ ⊞ ×
SOC_2_In	nportF	rom lensorflow.mix *)	×[+]															-
		Import Tens	orFlow Netv	vork into N	IATLA	В												
9		battery_S6	9C_net = imp	ortTensorF	lowNet	work(fullfile	(proje	ectPath,"mod	els",	"TF2.3	',"batter	rySoc_net")	,"Output	LayerTy	pe","reg	ression")		=
		Importing t	the saved mode.	1														
		Finished tr	anslation. As	sembling net	work	minutes												
		Import fini	Lshed.															
		DAGNetwor	C_net =	ties														
		Drone chor	n with proper	105.														
		La	ayers: [9×1 nno tions: [8×2 tal	et.cnn.layer blel	.Layer]													
		InputN	Names: {'input	_2'}														
		OutputN	Names: {'Regre	ssionLayer_c	lense_7'	}												
10		save(fullf	file(project	Path <mark>, "mod</mark> e	ls","b	attery_SOC_ne	t.mat'	"),"battery_	50C_n	et")								
_																		-
		Analyze the	e Imported N	etwork Arc	hitect	ure												
11		analyzeNet	twork(batter	y_S0C_net)	;													
																		_
		Load Test D	Data															
12		% Load tes	st data															
13		load('test	tData.mat');															
14																		
15		%% Evaluat	te for test	case for n	egativ	e 10deg C tem	perati	ure.										
16		X_Test_n10	<pre>9degC_Norm =</pre>	zeros(siz	e((Xin	put{1,1}')));												
18		X Test	t n10degC No	(1), (1), (2) rm(1) =	Xinnut	{1 1}(: i)'·												
19		end	rodogo_no		. an ip or e	(_,_) (,,_) ,												
-											Zoom: 150%	UTF-8	LF	script				

Discover the latest pretrained models – on GitHub MATLAB Deep Learning Model Hub

- Quick reference to over 60* pretrained models in:
 - Computer Vision
 - Natural Language Processing
 - Audio
 - Lidar
 - * New models added every month

tiny-yoloy3-coco

darknet19-VOC

darknet19-COCO

tiny-yolo_v2-coco

VOI 0 v3

YOLO v2

Pretrained object detectors have different characteristics that matter when choosing a network to apply to your problem. The most important characteristics are mean average precision (mAP), speed, and size. Choosing a network

9.3

754

28.7

10.5

31.5

180

181

40

80

80

Doc

GitHub

Run experiments to find the best AI model

•••			E	xperiment Manager					
EXPERIMENT MANAGER									?
New Copen - Layout Tile ENVIRONMENT RUN	p Trainin Plot REVI	ug Confusion Matrix ← IEW RESULTS	Filter Export						
EXPERIMENT BROWSER	Baseline	Tuning × Bas	eline Tuning Result1 ×						0
DigitsClassifier	- Result	Details							
Baseline Establishment Sweep Initial Learning Rate Baseline run Asseline Tuning Result1 (Running) I arger Initial Learning Rate Range	Baseline (View Ex	Tuning periment Sourc	2/7/202 ;e)	20, 12:53:36 PM	Complete 7 Running 1	A s ≌ (štopped 0 Queued 8	Erro X Can	7/16 Trials r 0 celed 0
Sweep Learning Rate Conv Size and				1	1				
Add Conv-Batch-ReLu Banks	Trial	Status	Progress	Elapsed Time	myInitialLearn	convFilterSize	Training Accu	Training Loss	Validation Ac
□ Vary Filter Size of First Conv2D Layer	1	Complete	100.0%	0 hr 0 min 16 sec	1.0000e-6	3.0000	12.5000	2.6441	10.
Train Validation Split Study	2	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-5	3.0000	25.7813	2.1228	20.
	3	Complete	100.0%	0 hr 0 min 14 sec	0.0001	3.0000	64.8438	1.0878	42.
	4	Complete	100.0%	0 hr 0 min 16 sec	0.0005	3.0000	90.6250	0.4648	49.
	5	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-6	4.0000	11.7188	2.4967	б.
	6	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-5	4.0000	23.4375	2.1213	14.
	7	Complete	100.0%	0 hr 0 min 17 sec	0.0001	4.0000	72.6563	1.0283	39.
	8	O Running	30.7%	0 hr 0 min 4 sec	0.0005	4.0000			
	9	here and the two terms of the terms of terms	0.0%		1.0000e-6	5.0000			
	10	E Queued	0.0%		1.0000e-5	5.0000			
	11	E Queued	0.0%		0.0001	5.0000			
	12	E Queued	0.0%		0.0005	5.0000			
	13	는 Queued	0.0%		1.0000e-6	6.0000			
	14	E Queued	0.0%		1.0000e-5	6.0000			
	15	Neued Queued	0.0%		0.0001	6.0000			
	16	E Queued	0.0%		0.0005	6.0000			

Spectrum of ways to leverage AI models

Build, run, or fine-tune models locally

Connect to top performing models in the cloud

Rank★ (UB)	Model 🔺	Arena Score 🔺	95% CI ▲	Votes 🔺	Organization	
1	Gemini-1.5-Pro-Exp-0801	1300	+6/-5	12672	Google	
2	GPT-40-2024-05-13	1286	+3/-2	69832	OpenAI	
2	GPT-4o-mini-2024-07-18	1280	+6/-4	12047	OpenAI	
4	Claude 3.5 Sonnet	1271	+3/-4	40174	Anthropic	
4	Gemini-Advanced-0514	1266	+3/-4	50686	Google	
4	Meta-Llama-3.1-405b-Instruct	1262	+6/-7	8454	Meta	

Leaderboard: https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

matlab-deep-learning/ Ilms-with-matlab

Connect MATLAB to the OpenAI Chat Completions API (which powers ChatGPT)

GitHub - matlab-deep-learning/llms-with-matlab: Connect MATLAB to the OpenAI Chat Completions API (which powers ChatGPT) aithub.com - 5 min read

0

Text Generation Models

Image Generation Models

Generate images to test robustness of systems

Questions and concerns we need to answer to build confidence

AI Modeling

System-level Simulation

Memory and Execution Time

Verification and Validation

Testing on Hardware

5 keys to building confidence

Access and explore state of art AI models

MathWorks AUTOMOTIVE CONFERENCE 2024

Use Simulink to create a system-level model that incorporates the Al virtual sensor

Virtual sensor for Battery State of Charge (SOC) estimation

Why Al over Kalman filtering?

- No need of an internal battery model
- Training directly on measured data
- Capture very complex data relationships

MathWorks AUTOMOTIVE CONFERENCE 2024

Simulink now includes more AI blocks for more applications

Perform baseline testing in simulation

Use Data-Driven Tests in Simulation to Assert Accuracy

Baseline Data

Ground truth e.g., lab measurements

VS.

Simulation Output

Prediction results

Perform back-to-back testing on model behavior

Test equivalence of model behavior from desktop simulations to SIL/PIL/HIL

Questions and concerns we need to answer to build confidence

AI Modeling

System-level Simulation

Memory and Execution Time

Verification and Validation

Testing on Hardware

5 keys to building confidence

- Access and explore state of art AI models
- System-level testing to assess impact of adding AI component

Reduce model footprint and accelerate inference of DL models for deployment to the edge

Fine tune using projection-based model compression techniques

Apply pruning to a variety of AI model types to reduce memory footprint

Pruning ~4x Memory Reduction

Equivalent Accuracry

Quantize deep networks to 8-bit scaled integer data types

DEEP NETWORK QUANTIZER

Deploy compressed model using automatic code generation

Perform trade-off analysis between AI and traditional techniques

Questions and concerns we need to answer to build confidence

AI Modeling

System-level Simulation

Memory and Execution Time

Verification and Validation

Testing on Hardware

5 keys to building confidence

- Access and explore state of art AI models
- System-level testing to assess impact of adding AI component
- Model compression, trade-off studies, and leverage automatic code generation

Neural networks can misclassify inputs due to small imperceptible changes

Neural network verification provides formal evidence that your model behaves as intended

Deep Learning Toolbox Verification Library by MathWorks Deep Learning Toolbox Team **STAFF**

Verify and test robustness of deep learning networks

Perform formal verification to test robustness

Robustness against Input Perturbation

dlX = dlarray(X, 'BC');
XLower = dlX-perturbation;
XUpper = dlX+perturbation;
<pre>dlnet = dlnetwork(trainedNetwork.Layers(1:end-1));</pre>
<pre>[YLower,YUpper] = estimateNetworkOutputBounds(dlnet,XLower,XUpper);</pre>
YLower = extractdata(YLower)';
YUpper = extractdata(YUpper)';
<pre>maxDeviation = max([abs(YLower-Y_pred);abs(YUpper-Y_pred)]);</pre>

Check for out of distribution values to ensure safety

Integrate and test your AI model with Simulink with a Runtime Monitoring System

In-distribution \checkmark

Out-of-distribution 🗙

Explain & Visualize how a Model Works

There are visualization techniques to investigate and explain model predictions.

rAmplitude2

rAmplitude1

RR0

-1

Which features did a model use to make a prediction?

What are the main features found in each of the layers?

Class Activation Mapping	R 2019 a
Occlusion	R 2019 b
Local Interpretable Model-agnostic Explanation (LIME)	R 2020 b
GRAD-CAM, Shapley Values	R 2021 a
GRAD-CAM for 1-D	R 2022b
Fairness Metrics, Neuron Coverage	R 2022 b
Bias mitigation using fairness thresholder for binary classification	R 2023a
Fairness metrics comparisons	R 2023a
Multi-point Shapley values/plots	R 2024a
Explain object detectors using D-RISE	R 2024a

There is an increased focus in government **regulation and certification** efforts

Published first reference application on developing system with AI component to comply with DO-178

Feature Extracto

Exysta

Shieot Classificati

Runway Sign Classifier: Certify an Airborne Deep Learning System

Demonstrates the certification of airborne deep learning system.

Questions and concerns we need to answer to build confidence

AI Modeling

System-level Simulation

Memory and Execution Time

Verification and Validation

Testing on Hardware

5 keys to building confidence

- Access and explore state of art AI models
- System-level testing to assess impact of adding AI component
- Model compression, trade-off studies, and leverage automatic code generation
- Verify robustness and test for out of distribution

Generate Library-Free C/C++ Code for Al Models

Processor-in-the-Loop Testing on ARM Cortex-M7 Processor

Processor-in-the-Loop Testing on ARM Cortex-M7 Processor

Questions and concerns we need to answer to build confidence

AI Modeling

System-level Simulation

Memory and Execution Time

Verification and Validation

Testing on Hardware

5 keys to building confidence

- Access and explore state of art AI models
- System-level testing to assess impact of adding AI component
- Model compression, trade-off studies, and leverage automatic code generation
- Verify robustness and test for out of distribution
- Perform PIL and HIL testing

Learn about other automotive uses of AI virtual sensors

Battery pack SOC estimation with neural network

Mercedes-Benz

Engine piston pressure estimation with deep neural network

5 keys to building confidence through design for AI-driven systems

- 1. Access and explore state of art models
- 2. System-level simulation to test impact of adding AI component
- 3. Model compression, trade-off studies, and leverage automatic code generation
- 4. Verify **robustness** and test for **out of distribution**
- 5. Perform **PIL and HIL** testing

Get started quickly with end-end reference examples

This example shows how to perform these steps:

47

- 1. Define Requirements for Battery State of Charge Estimation
- 2. Prepare Data for Battery State of Charge Estimation Using Deep Learning
- 3. <u>Train Deep Learning Network for Battery State of Charge Estimation</u>
- 4. Compress Deep Learning Network for Battery State of Charge Estimation
- 5. <u>Test Deep Learning Network for Battery State of Charge Estimation</u>
- 6. Integrate AI Model into Simulink for Battery State of Charge Estimation
- 7. Generate Code for Battery State of Charge Estimation Using Deep Learning

How Generative AI will Impact Engineering Workflows

Augment Existing Workflows

- Learn while doing
- Create code, analyses, models, etc. using NLP
- Check, verify, validate

Empower MATLAB and Simulink Users to Build

- Access popular models for text, images, video, etc.
- Build custom transformer models
- Easy from options from platforms like Hugging Face

Now, Near-term

Generative AI in Engineered Systems

- Apply LLM innovations to time-series sensor data
- Real-time and near-real-time systems
- Safety-critical

Future

MathWorks AUTOMOTIVE CONFERENCE 2024

MATLAB AI Chat Playground

- Experiment with an AI assistant alongside MATLAB
- Generate first-draft MATLAB code or ask questions

Powered by the ChatGPT API's

Ξ	A Math	Works*	
I Chat Pla	ayground		
Clear -			
 ✓ AI Hello! Whether have been using provide coding Please keep seems accurate features del Simulink an experimenta ☐ or ☐ on ✓ Shuffle 	er you're checking out MATLAB for the first time or ing it for years, I'm here to answer your questions and g tips. In mind that AI sometimes writes code and text that irate, but isn't. AI does not yet have knowledge of ivered after June 2021 and only limited knowledge of d specialized toolboxes. This is a space for ation. Try it, verify any resulting code, and kindly give the results to help improve the responses. Determine whether a matrix is sparse Create some data, construct a grid of query points, interpolate on the grid, and plot the results		
	Highlight contours at particular levels		

https://www.mathworks.com/matlabcentral/playground

Use Large Language Models with MATLAB

- GitHub Repo: <u>Ilms-with-matlab</u> within matlab-deep-learning
- Connect to models via the OpenAI[™] API and the Azure® OpenAI Service
- Connect to local and remote models hosted with Ollama
- Examples of chatbots, text summarization, retrieval augmented generation, image generation

Please join our other AI sessions today

MathWorks AUTOMOTIVE CONFERENCE 2024

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.