
1© 2017 The MathWorks, Inc.

New Requirements, Coverage, and Checking
Capabilities with Model-Based Design

Paul Urban

V&V Product Marketing Manager

September, 2017

2

Growing Complexity of Automotive Controls

Engine Management

Transmission Control

Forward Camera

Electric Power Steering

Smart Junction Box

Smart Junction Box

Battery Management

Propulsion Motor Control

DC/DC Converter

Stability Control

Infotainment

HVAC Control

Navigation

Instrument Panel

Vehicle-to-Vehicle

Vehicle-to-
Infrastructure

Short-Range Radar

Ultrasonic Sensor

Long-Range Radar

Stability Control

Airbag
Emergency Braking

Automatic Parking

Adaptive Cruise Control

All-Wheel Drive

Active Damping

4-Wheel Steer

Back-up Camera

Body Control Module

Tire Pressure Monitor

Voice Recognition

Adaptive Front
Lighting

Power Window

Power Seat

Keyless Entry

Power Liftgate

E-Call

Source of graphic: http://360.here.com/2013/11/28/putting-firmly-drivers-seat/

3

Growing Complexity of Automotive Controls

Engine Management

Transmission Control

Forward Camera

Electric Power Steering

Smart Junction Box

Smart Junction Box

Battery Management

Propulsion Motor Control

DC/DC Converter

Stability Control

Infotainment

HVAC Control

Navigation

Instrument Panel

Vehicle-to-Vehicle

Vehicle-to-
Infrastructure

Short-Range Radar

Ultrasonic Sensor

Long-Range Radar

Stability Control

Airbag
Emergency Braking

Automatic Parking

Adaptive Cruise Control

All-Wheel Drive

Active Damping

4-Wheel Steer

Back-up Camera

Body Control Module

Tire Pressure Monitor

Voice Recognition

Adaptive Front
Lighting

Power Window

Power Seat

Keyless Entry

Power Liftgate

E-Call

2000 2015Lines of Code

16 M

2-3M

6 M

Siemens, “Ford Motor Company Case Study,” Siemens PLM Software, 2014
McKendrick, J. “Cars become ‘datacenters on wheels’, carmakers become software companies,” ZDJNet, 2013

4

Growing Complexity of Automotive Controls

Engine Management

Transmission Control

Forward Camera

Electric Power Steering

Smart Junction Box

Smart Junction Box

Battery Management

Propulsion Motor Control

DC/DC Converter

Stability Control

Infotainment

HVAC Control

Navigation

Instrument Panel

Vehicle-to-Vehicle

Vehicle-to-
Infrastructure

Short-Range Radar

Ultrasonic Sensor

Long-Range Radar

Stability Control

Airbag
Emergency Braking

Automatic Parking

Adaptive Cruise Control

All-Wheel Drive

Active Damping

4-Wheel Steer

Back-up Camera

Body Control Module

Tire Pressure Monitor

Voice Recognition

Adaptive Front
Lighting

Power Window

Power Seat

Keyless Entry

Power Liftgate

E-Call

2000 2015Lines of Code

16 M

2-3M

6 M500K

50M+

3-4M

100MToday cars

Ford Taurus
2012

Boeing 777

Space
Shuttle

Source:
https://interact.gsa.gov/sites/default/files/J3061%20JP%20presentation.pdf

5

Problems with Traditional Development Process

Design Concept Handwritten Code ECU

Most errors
introduced

Testing finds
errors late

Latent errors remain
in the software

6

Cost of finding errors increases over time

Time

Testing
Cost Develop some tests

Integration test on
hardware or in the field

Unit test on PC/Desktop

Design Concept Handwritten Code ECU

7

Addressing Challenges with Model Based Design Verification
Workflow

1. Find defects earlier

2. Automate manual verification tasks

3. Learn about reference workflow that conforms to
safety standards

8

Reference Verification and Validation Workflow

9

Reference Verification and Validation Workflow

 Certifiable Model-Based Design Workflow to develop critical embedded software

 Reviewed and approved by TÜV SÜD certification authority

 Detailed workflow documented in MathWorks IEC Certification Kit

Textual
Requirements

Executable
Specification

Modelling

Object
code

Compilation
and Linking

Generated
C/C++ code

Code
Generation

Model used for
production code

generation

Review and
static analysis

Equivalence
testing

Equivalence
checking

Component and system
testing

10

Development Process and Workflow

Textual
Requirements

Executable
Specification

Model used for
production code

generation

Generated
C/C++ code

Object
code

Modelling
Compilation
and Linking

Code
Generation

Requirements for system
or software component

11

Development Process and Workflow

Textual
Requirements

Executable
Specification

Modelling

• Predict dynamic system behavior by simulation
- System & environment models
- Precision with floating point

• Use of simulation results for system design
- Fast What-/If studies
- Short iteration cycles

Model used for
production code

generation

Generated
C/C++ code

Object
code

Compilation
and Linking

Code
Generation

12

Development Process and Workflow

Textual
Requirements

Executable
Specification

Model used for
production code

generation

Modelling

• Model tuned for target processor
- Fixed point mathematics, real-time behavior

• Configure for production use
- Support for standards (e.g. MISRA)

Generated
C/C++ code

Object
code

Compilation
and Linking

Code
Generation

13

Development Process and Workflow

Model used for
production code

generation

Generated
C/C++ code

Code
Generation

• Automatically generated code for target processor
- Optimized, efficient C/C++ code

• Fine grain control of generated code
- Files, functions, data

Object
code

Compilation
and Linking

Textual
Requirements

Executable
Specification

Modelling

14

Development Process and Workflow

Generated
C/C++ code

Object
code

Compilation
and Linking

Object code linked with system
software and flashed to ECU

Model used for
production code

generation

Code
Generation

Textual
Requirements

Executable
Specification

Modelling

15

Verification and Validation
Tasks and Activities

16

Generated
C/C++ code

Object
code

Compilation
and Linking

Code
Generation

Requirements Traceability
Text ↔ Models

 Find missing or incomplete requirements

 Are requirements sufficiently specified?

 Identify requirements inconsistencies

 Product: Simulink Requirements*

Textual
Requirements

Executable
Specification

Model used for
production code

generation

Modelling

Verification and Validation Tasks and Activities

* Customers with Simulink V&V licenses will automatically receive this product

17

Simulink Requirements
Work with requirements without leaving Simulink

Requirements
Traceability

• Trace to design, code and test

• Understand impact to design

Requirements
Capture

• Author requirements in Simulink

• Drag and drop to create links

Manage and Analyze
Requirements

• Identify gaps in design or test

• Respond to requirement
changes

18

Requirements
Browser

Badges and
Markups on
canvas Requirements

Property Inspector

Requirements Perspective
Author, edit and organize requirements

Requirements Perspective

19

Explore Requirements and View Status

View
Requirement
Hierarchy

Filter with
search

Add New
Requirements

Create and Open
Requirement Sets

Implementation
Status Roll-up

Verification
Status Roll-up

Passed

Failed

Unknown

No Test

Verification Status

Implemented

Justified

Implementation Status

No Link

20

View and Edit Requirement Details

Index, Custom
ID & Summary

Description &
Rationale

Keywords

View and Edit
with Rich Text

Links Pane
with test result

Revision
Information

21

View Requirements and Design Together

Link
Information

Requirement
Annotation

Requirement
Badges indicate
blocks with links • Identify missing

traceability

• Communicate
requirement details
with model

22

Drag and Drop to Create Links and View
Requirements on Diagrams

23

Track Implementation and Verification

Design Model

Tests

Test results

x

Implemented by

24

Import External Requirements

• Access external requirements
without leaving Simulink

• Navigate back to source document
• Update synchronizes external

document changes

Import as reference or
for modification

External Requirements
• Word
• Excel
• DOORS

25

Identify and Respond to Changing Requirements

Requirements
with changes are
highlighted Take action to address

change and clear issue

26

Changes in R2017b aligning products to usage

Simulink Requirements

Requirements Authoring,
Editing and Management (17b)

RMI

 New Simulink Requirements product includes RMI
 Model and Code Coverage move to Simulink Coverage
 Static checking, metrics, clone detection move to Simulink Check
 Customers with Simulink V&V licenses will receive all products automatically

Simulink Check

Standards / Guidelines
Checking & Metrics

Simulink Coverage

Model & Code Coverage

Simulink V&V

Requirements
Traceability (RMI)

Model & Code Coverage

Standards/Guidelines
Checking & Metrics

and earlier

27

Generated
C/C++ code

Object
code

Compilation
and Linking

Code
Generation

Check Conformance
to Standards

 Check design for various standards

– MAAB, ISO 26262, MISRA C:2012 …

 Ensure design consistency

– Between Teams, Suppliers, …

 Product: Simulink Check*

Executable
Specification

Model used for
production code

generation

Modelling

Verification and Validation Tasks and Activities

Textual
Requirements

28

Simulink Check
Automate verification and correct models to improve design

Model Refactoring

• Find clones and
modeling patterns

• Refactor to improve
maintainability

Clones

Model Metrics

• Analyze complexity,
size, reusability

• Assess design quality

Edit Time Checking

• Find and fix compliance
issues while you design

• Avoid rework later

Standards &
Guidelines Checks

• Automate compliance
to standards

• Customize checks

29

Example

Is there a potential error in this model? It depends…

30

Example

How about now?

When generating code:
• Floating-point precision

issues may lead to
incorrect comparison
results

Is this a production
model?
• Implementation requires

a fixed-step, discrete
solver

• Ports do not follow
established naming
conventions

31

Simulink Check
Automate verification and correct models to improve design

 Automates checking of:
– Guideline conformance
– Readability
– Performance
– Efficiency
– Potential errors

 Supports:
– MAAB Guidelines
– High Integrity Guidelines
– Code Generation Guidelines
– Custom standards creation
– Standards:

ISO 26262, IEC 61508, MISRA C:2012,
CERT C, CWE, ISO/IEC TS 17961
DO-178/DO-331, IEC 62304 , EN 50128

32

Requirements

Design

Code

Unit/Integ
Test

System
Test

Standards
Checking

Waiting to Check Standards Leads to Rework

 Checks for standards and guidelines
are often performed late

 Typically after design complete and
before code generation

 Results in finding many errors

 Leads to last minute rework

33

Fix Errors As You Go With Edit-Time Checking

 Violations are highlighted as you edit
– Similar to grammar checking in text editor

 Quickly address compliance and
modeling standard issues

 Avoid rework later to meet standards

Requirements

Design

Code

Unit/Integ
Test

System
Test

Edit-Time
Checking

Requirements

Design

Code

Unit/Integ
Test

System
Test

Edit-Time
Checking

34

Find Compliance Issues as you Edit with Edit-Time Checking

35

How to measure MBD quality?

Direct measures

 Number of blocks

 Number of data objects

 McCabe model complexity

 Signal coupling

 Number of line crossings

 Number of requirements

 …

Indirect measures

 Number of passed Model

Advisor checks

 Number of passed test cases

 Model decision converage

 Number of design errors

 …

36

View Metrics with Metrics Dashboard

• Consolidated view of
metrics
• Size
• Compliance
• Complexity

• Assess quality of the
model

• Identify where problem
areas may be

37

Explore Metric Details

• Drill down in dashboard
for detailed metrics

• Uncover errors earlier

Guidelines

Complexity

Clones

38

Detecting Copy and Paste (Clone) Errors

 Copy and pasting model content is
common practice
– Results in subsystem and model clones

 Risks of cloned subsystems
– Bugs may propagate across design

– Difficult to find all occurrences to fix

– Code size may be increased Copied
blocks

39

Clone Detection and Refactor

 Find duplicate model content in your design
for reuse

 Replace exact clones with library blocks to
improve reuse

 Find patterns stored in a library and link to
library

Identify modeling patterns and refactor
to simplify model

Clones replaced
by library blocks

Library
pattern

Library

40

Summary of experimental results with customer models

• Customer projects tested118
• Projects that contained at least one subsystem

clone group80%

• Max number of clone groups in a given model 140

• Largest number blocks in a single clone group~2000
• Largest reduction in generated lines of code in

one model -54%

41

Verification and Validation Tasks and Activities

Functional Testing

Textual
Requirements

Executable
Specification

Model used for
production code

generation

Generated
C/C++ code

Object
code

Modelling
Compilation
and Linking

Code
Generation

 Does design meet requirements?

 Confirm correct design behavior

 Verify no unintended behavior

 Product: Simulink Test

42

Functional Testing Process

 Author test-cases that are derived from requirements
– Use test harness to isolate component under test

– Test Sequence to create complex test scenarios

 Manage tests, execution, results
– Re-use tests for regression

– Automate in Continuous Integration
systems such as Jenkins

43

Verification and Validation Tasks and Activities

Formal
Verification

Textual
Requirements

Executable
Specification

Model used for
production code

generation

Modelling

 Prove design meets requirements
– Formally verify requirements and safety

– Test case generation for functional testing

 Prove that the design is robust
– Check that the design does not contain errors

such as overflow, divide by zero, dead logic, …

 Product: Simulink Design Verifier

Generated
C/C++ code

Object
code

Compilation
and Linking

Code
Generation

44

Verification Task

Model used for
production code

generation

Object
code

Compilation
and Linking

Coverage Analysis

• How much of software has been tested?

 Identify testing gaps to find
– Untested design elements

– Dead logic and unreachable states

– Identify missing or inconsistent requirements

 Product: Simulink Coverage*

Textual
Requirements

Executable
Specification

Modelling

Generated
C/C++ code

Code
Generation

* Customers with Simulink V&V licenses will automatically receive this product

45

Simulink Coverage
Measure test coverage in models and generated code

•Measure test completeness

• Identify missing tests or
unintended functionality

Model
Coverage

Generated Code
Coverage

•Find untested generated code

•Map results from code to
model object

Highlighting and
Reporting

•View coverage results on diagrams

•Manage accumulated coverage
results

46

Model Elements That Receive Coverage

Simulink models MATLAB function blocks Stateflow charts

C/C++ code S-Functions Generated code

47

Highlight And Explore Coverage Results On Model

Simulink Stateflow

Highlighting shows you missing coverage
• Green is full coverage
• Red shows missing coverage

Coverage Display Window
• Quickly see detailed coverage

results for object

48

Coverage Reports For Analysis, Reviews And Documentation

• Summary section provides quick overview of results

• Detailed metrics are reported for each object including
Decision, Condition, MCDC and more

• Easily navigate to model or code from report

49

Verification and Validation Tasks and Activities

Model used for
production code

generation

Generated
C/C++ code

Object
code

Compilation
and Linking

Code
Generation

Test Generation
for Coverage

 Automate manual task of writing test-cases and test inputs
– Intelligent determination of input combinations for high coverage

 Formal methods based test generation
– Analyze design, states, logic paths in the design model

 Product: Simulink Design Verifier

Textual
Requirements

Executable
Specification

Modelling

50

Addressing Missing Coverage

Test Cases

Partial Coverage

51

Test
Generator

Simulink Design Verifier

Addressing Missing Coverage

Test Cases

Partial Coverage

52

Addressing Missing Coverage

Test Cases

Partial Coverage

Test
Generator

Simulink Design Verifier

New Test Cases

53

Addressing Missing Coverage

Test Cases

Full Coverage

New Test Cases

54

Automatically Address Missing Coverage

Generate additional tests automatically using Simulink Design Verifier from
within the Test Manager to increase coverage

55

Verification and Validation Tasks and Activities

Equivalence Testing

Model used for
production code

generation

Generated
C/C++ code

Object
code

Modelling
Compilation
and Linking

Code
Generation

SIL – Software in the Loop
(prevention of unintended
functionality)

PIL – Processor in the Loop
(back to back testing)

Code
Generation

Executable
Specification

Modelling

Textual
Requirements

Product: Simulink Test

56

Software In the Loop (SIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on PC)

Results

Generated
Code Object File

Embedded
Coder

PC
Compiler

== ?

Compare

 Show equivalence, model to code

 Assess code execution time

 Collect code coverage

57

Processor In the Loop (PIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on target)

Results

Generated
Code Object File

Embedded
Coder

Cross
Compiler

== ?

Compare

 Verify numerical equivalence

 Assess target execution time

 Collect on target code coverage

58

MathWorks V&V Solution Summary

Author, manage, and trace requirements
Requirements

Verify compliance with standards and guidelines
Standards Compliance

Develop, manage, execute simulation-based tests
Testing

Prove design meets requirements, prove robustness
Formal Verification

Measure model and generated code coverage
Coverage Analysis

Check bugs, MISRA compliance, prove code
Static Code Analysis

Perform back-to-back testing
SIL, PIL

59

MathWorks V&V Product Capabilities

Simulink Requirements* (New in R2017b)
Requirements

Simulink Check* (New in R2017b)
Standards Compliance

Simulink Test
Testing

Simulink Design Verifier
Formal Verification

Simulink Coverage* (New in R2017b)
Coverage Analysis

Polyspace Bug Finder, Polyspace Code Prover
Static Code Analysis

Simulink Test
SIL, PIL

* Customers with Simulink V&V licenses will automatically receive these new products

60

Qualify Tools using IEC Certification Kit
for ISO 26262, IEC 61508, and related standards

 Qualify tools, including
– Embedded Coder

– Simulink Check

– Simulink Coverage

– Simulink Design Verifier

– Simulink Test

– Polyspace Bug Finder

– Polyspace Code Prover

 Support standards, including
– ISO 26262 (Automotive)

– IEC 61508 (Industrial)

– EN 50128 (Rail)

– IEC 62304 (Medical)

61

Customer References and Applications

62

Key Takeaways

1. Find defects earlier

2. Automate manual verification tasks

3. Reference workflow is supported by V&V tools and conforms to safety
standards

Textual
Requirements

Executable
Specification

Modelling

Object code

Compilation and
Linking

Generated
C/C++ code

Code
Generation

Model used for
production code

generation

Review and static
analysis

Equivalence
testing

Equivalence
checking

Component and system
testing

After Lunch:
SW 신뢰성향상을위한
테스팅솔루션
: Simulink Test

이제훈차장

63

Thank You!

고맙습니다!

64

Appendix

65

Learn More:
MathWorks Release 2017b: Prerelease Information (June
2017)

66

Learn More:
MathWorks Release 2017b: Prerelease Information (June
2017)

