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System-level requirement development needs to deal with driver, controller and plant.
How to do it in early control design phase?

Motivation … System-Level Control Requirement Development

Example scenario

Verifying a part of software in 
the controller does not help 
frontload the system level 
requirement development.

Suppose air-to-fuel ratio should 
settle within 𝑥% error window 
in 𝜏 seconds after a certain 
controller mode change…
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Scalability of V&V methods during 
early control design phase is a must

 V&V with MiL/SiL

Scales of Testing in Automotive Control System Development

Hardware Unit

Unit test
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 Requirement Falsification using S-TaLiRo

 Example – Benchmark Closed-Loop Model for Air-to-Fuel Ratio Control

 Designing Requirements using Metric Temporal Logic & Signal Temporal Logic

 Setting up Falsification Process

 Example outputs from S-TaLiRo

 Potential Improvement Points

 Requirement Mining using Breach

 Summary & Conclusion

Overview
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An Emerging, Scalable V&V Method – Requirement Falsification Simulation

Counter example
Temporal 

requirement

Requirement falsifier

S-TaLiRo (Arizona State U, Colorado U)
https://sites.google.com/a/asu.edu/s-taliro/s-taliro

Breach (UC Berkeley)
http://www.eecs.berkeley.edu/~donze/breach_page.html

User input to falsifier

Closed-Loop Simulator

Optimization

Initial conditions / Parameters

Input-signal traces
Ye

s
N

o

Falsified? Target signals
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Example – Air-to-Fuel Ratio Control Validation

The model is based on HSCC 2014 benchmark model:
Jin, X., Deshmukh, J. V., Kapinski, J., Ueda, K., Butts, K., “Powertrain Control Verification Benchmark”, HSCC 2014

AFR setpoint

O2 sensor signal

time

Input from
falsifier

Outputs to
falsifier
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Engine Model Input/Output

Ambient pressure (bar)

Throttle angle command (deg)

Injection rate (g/s)

Engine speed (rpm)

Tolerances

Delayed throttle angle (deg)

Throttle air flow (g/s)

AFR sensor signal (-)

Engine Model

HSCC Benchmark model has Simulink-based engine model.
It was replaced with Simscape-based model here.
Their simulation results are identical.
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Engine Dynamics 1 of 2 … Throttle, Intake & Fuel Injection

der(delayed_thr) == {-10 '1/s'}*(delayed_thr - thr_cmd);
thr_deg_noguard == delayed_thr + thr_rest;
%...
thetaHat == c6 + c7*thr_deg + c8*thr_deg^2 + c9*thr_deg^3;
%...
mdot_thr == {1 'g/s'}*dir*thetaHat*2*sqrt(p_d/p_u - (p_d/p_u)^2);
%...

der(p_mani) == RT_V*(mdot_thr - mdot_air_tocyl);  % pdot=(R*T/V)*mdot
mdot_air_tocyl == tol_pump*(c2 + c3*w*p_mani + c4*w*p_mani^2 + c5*w^2*p_mani);

Throttle Air Flow Rate

Intake Manifold Pressure

kappa == tol_kappa * tablelookup(kappa_x1data, kappa_x2data, kappa_ydata, ...
eng_rpm, cyl_chg);

tau_ww == tol_tau_ww * tablelookup(tau_ww_x1data, tau_ww_x2data, tau_ww_ydata, ...
eng_rpm, cyl_chg);

der(m_fuel) == (1-kappa)*inj_cmd - m_fuel/tau_ww;
mdot_fuel_tocyl == kappa*inj_cmd + m_fuel/tau_ww;

Fuel Injection and Port Wet



9

Engine Dynamics 2 of 2 … Mean-Value Cylinder & Exhaust Dynamics

cyl_chg == mdot_air_tocyl/w * (4*pi) / Ncyl;  % Air charge per cylinder
cyl_afr == mdot_air_tocyl / mdot_fuel_tocyl;

Simplistic Mean-Value Cylinder

cyl_delay == tablelookup(cyl_delay_x1data, cyl_delay_x2data, cyl_delay_ydata, ...
eng_rpm, cyl_chg);

delayed_afr == delay(cyl_afr, cyl_delay, ...
History=cyl_afr_pre, MaximumDelay=afr_delay_max);

der(exh_afr) == {-10 '1/s'}*(exh_afr - delayed_afr);
der(afr_sensor) == {-50 '1/s'}*(afr_sensor - exh_afr);

Exhaust AFR

Cylinder AFR

Exhaust AFR O2 sensor
signalEngine

speed
1000RPM

e.g.
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Inputs to Controller
• Engine speed (rad/s)
• Throttle angle (deg)
• Throttle air flow (g/s)
• O2 sensor signal (-)

Tasks
• Power-on function
• Controller mode (normal or power) @10ms
• Injection command @10ms

Output from Controller
• Injection command (g/s)

Output for Validation
• Fuel control mode
• AFR setpoint

Controller (Sample Model)

Following MAAB Guideline
Control model architecture, Type A
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Controller Mode/Reference Selection .. 10ms timer

AFR setpoint
Normal mode: 14.7
Power mode: 12.5

Controller mode
1 for feed-forward
0 for FF + feedback

Throttle angle

AFR sensor signal

Sensor fail?

Normal mode?

Power mode?
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Fuel Controller .. 10ms timer

Throttle air flow

RPM

AFR setpoint

O2 sensor

Air estimation Feed-forward controller

Feedback PI controller

Injection command

Controller mode



Designing Requirements

𝐴 ⇒ 𝐵

If A happens, B must happen.

• 𝐴: Control mode switches from “power” to “normal” within 20ms.
• 𝐵: 𝜇 must settle within ±0.02 within 1 second and must stay there for 4 seconds. 
• Always “𝐴 ⇒ 𝐵” must be true, i.e., whenever 𝐴 happens, 𝐵 must happen.

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 ℓ = power ∧ 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦(0,0.02)ℓ = normal ⇒ 𝑎𝑙𝑤𝑎𝑦𝑠 1,5 𝜇 < 0.02

𝜇 𝑡 =
𝜆𝑠𝑒𝑛𝑠 𝑡 − 𝜆𝑟𝑒𝑓(𝑡)

𝜆𝑟𝑒𝑓(𝑡)

e.g.

e.g. Settling Time Requirement

𝐴 𝐵

MTL/STL can represent system-level real-time control requirements.

Metric Temporal Logic (MTL) and Signal Temporal Logic (STL) allow the description of 
temporal properties like above in a machine readable manner: 

13

Normalized AFR error

t
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𝜇 𝑡 =
𝜆𝑠𝑒𝑛𝑠 𝑡 − 𝜆𝑟𝑒𝑓(𝑡)

𝜆𝑟𝑒𝑓(𝑡)Controller

Engine
Pedal angle

Engine speed

Initialize Simulate Estimate robustness

Closed-Loop System

Falsified? Counter example
found

Requirement Falsification

Requirement falsifier tries to falsify requirements by simulation.
This is not property proving, not exhaustive, but can handle large-scale system.

e.g. min
t
(𝜇 − 0.02)

Yes

No

Normalized AFR error

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 𝜇 < 0.02e.g. Transient requirement



Writing Temporal Requirement for S-TaLiRo

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 ℓ = power ∧ 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦(0,0.02)ℓ = normal ⇒ 𝑎𝑙𝑤𝑎𝑦𝑠 1,5 𝜇 < 0.02

𝐴 ⋅ 𝑥 ≤ 𝑏
𝜇

Top-level outputspreds(3).str = ’muhigh';
preds(3).A =  [1 0 0];
preds(3).b =  0.02 ;

preds(4).str = ’mulow';
preds(4).A =  [-1 0 0];
preds(4).b =  0.02 ;

Constraint

preds(1).str = 'norm';
preds(1).A = [0 1 0];  
preds(1).b = 0.5 ;

preds(2).str = 'pwr';
preds(2).A = [0 -1 0];
preds(2).b = -0.5 ;

ℓ

𝑥1

𝑥2

𝑥3

pwr

0.5≤ ℓ

norm

ℓ ≤ 0.5 −0.02 ≤ 𝜇

mulow

𝜇 ≤ 0.02

muhigh
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e.g. Settling Time Requirement

Predicates

phi = ['[] ((pwr /\ <>_(0, 0.02) norm) -> ([]_(1, 5) mulow /\ muhigh))'];



Designing Parameters & Initial Conditions

e.g. Pulse Generator Block

set_param([model,'/Pedal Angle (deg)'],'Amplitude',num2str(X0(1)));
set_param([model,'/Pedal Angle (deg)'],'Period',num2str(X0(2)));

Initial conditions (block parameters) are randomly chosen within the specified range for 
each simulation run by S-TaLiRo.

Suppose falsifier wants to vary 
amplitude (deg) and period (s) 
for each simulation run.

Initial_cond = [ 61.3  81.2 ; 10  20 ];

min max

X0(1) range

16



Designing Top-level Inputs

input_range = [ 900  1100 ];
cp_array = 1 ;
opt.interpolationtype={'const'};

Top-level inputs are manipulated by S-TaLiRo during a simulation run. The top-level inputs 
receives different input traces from S-TaLiRo for each simulation run.

min

max

Top-level input Control points

time
0 t_end

Input range

Interpolation method
• Constant
• Piecewise constant
• Interp1’s methods

17
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Counter exampleInitialize

Input signal traces

Simulate Estimate robustness Falsified?
Yes

No

Counter exampleReinitialize

Updated input signal traces

Simulate Estimate robustness Falsified?
Yes

No

Reinitialize

Updated input signal traces

Simulate Estimate robustness Falsified?

No @ max simulation runs

End with no counter example

Falsification Process

Counter example
Yes
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Example Outputs from S-TaLiRo, #1

No counter example was found

Number of simulation runs

User-specified max simulation runs

Number of global resets

Best/min robustness value

Optimization progress hint

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 11,50 𝜇 < 0.02 (Normal mode only)

e.g. Transient requirement
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Example Outputs from S-TaLiRo, #2

Falsified!

Negative robustness value

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 ℓ = power ∧ 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦(0,0.02)ℓ = normal ⇒ 𝑎𝑙𝑤𝑎𝑦𝑠 1,5 𝜇 < 0.02

Power mode (1) to 
Normal mode (0)

𝜇 < 0.02

1s 4s

e.g. Settling Time Requirement
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Potential Improvement Points

Counter example(Re)Initialize

(Updated) Input signal traces

Simulate Estimate robustness Falsified?
Yes

No

Restart from arbitrary time point

Temporal logic for typical engineering cases, 
such as signal oscillation

Parallelization Online estimation

Optimization of large complex logic

Generate inputs having engineering meanings, 
or inputs to select certain modes

Set constraints among parameters, initial conditions, inputs
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Re(Initialize)

(Updated) Input signal traces

Simulate Estimate robustness Falsified? Counter example
Yes

Coverage for No-counter Example Case

No @ max simulation runs

End with no counter example

“No counter example found”
… How much did the simulation cover?

Some coverage could be used as a stop condition, rather than maximum simulation runs.
However, such a coverage should cover both plant and controller.
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𝑢(𝑡)

Simulation-guided V&V Framework … Revisited and Updated

Counter
example

𝑦(𝑡)
Y

Temporal 
Properties

Falsified?

Y

N

Coverage N
Max
iter?

Online
𝜌

Closed-loop simulator, plant modeling, code generation and high-performance computing 
are also very import technologies to realize practical V&V environment.

Requirement falsifier

This could be
a coverage
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Init

Input traces

Simulate Est 𝜌 Falsified?
Y

N

Find parameters 
in requirement

Application of Falsification – Requirement Mining by Breach

Requirement 
Template

𝑎𝑙𝑤 0,𝜏1 𝑥1 < 𝜋1 ⇒ 𝑒𝑣 0,𝜏2 𝑥2 > 𝜋2e.g. 𝑎𝑙𝑤 0,3 𝑥1 < 700 ⇒ 𝑒𝑣 0,0.2 𝑥2 > 0.1

Potential uses of requirement mining:
• Worst-case testing
• Signal range mining

Falsifier

Candidate Requirement

Counter
example

Inferred 
Requirement



25

• Given its scalability, simulation-guided V&V such as requirement falsification is 
promising and already practical technology for large-scale control system development.

• Gaps towards widespread use in industry need to be filled fast.

• Simulation-guided V&V methods were introduced.
• Requirement falsification
• Requirement mining
• (There are other simulation-guided V&V methods.)
• Not proving, not exhaustive, but can handle large-scale system

• MTL/STL can represent system-level real-time control requirements.
• Potential improvement points were identified.

• In dire need of a good engineering coverage.

Summary & Conclusion

Thank you.


