
Simulation-Guided Verification & Validation
for Large-Scale Automotive Control Systems

Hisahiro “Isaac” Ito, Jim Kapinski, Jyotirmoy Deshmukh, Xiaoqing Jin, Ken Butts

May 12, 2015
Plymouth, MI, USA

1

MathWorks Automotive Conference

2

1s

2% window

Driver

Controller

Vehicle/Engine

(1)

(2)

(3)

System-level requirement development needs to deal with driver, controller and plant.
How to do it in early control design phase?

Motivation … System-Level Control Requirement Development

Example scenario

Verifying a part of software in
the controller does not help
frontload the system level
requirement development.

Suppose air-to-fuel ratio should
settle within 𝑥% error window
in 𝜏 seconds after a certain
controller mode change…

3

10s

1m

1hr

ECU

Test cell

Vehicle

1s

Vehicle

Program

System

Domain

Feature

Module
Tested
time horizon

Software scale
HiL

Hardware scale

Scalability of V&V methods during
early control design phase is a must

 V&V with MiL/SiL

Scales of Testing in Automotive Control System Development

Hardware Unit

Unit test

SiL

MiL

4

 Requirement Falsification using S-TaLiRo

 Example – Benchmark Closed-Loop Model for Air-to-Fuel Ratio Control

 Designing Requirements using Metric Temporal Logic & Signal Temporal Logic

 Setting up Falsification Process

 Example outputs from S-TaLiRo

 Potential Improvement Points

 Requirement Mining using Breach

 Summary & Conclusion

Overview

Plant

Controller

MiL/SiL/HiL

5

An Emerging, Scalable V&V Method – Requirement Falsification Simulation

Counter example
Temporal

requirement

Requirement falsifier

S-TaLiRo (Arizona State U, Colorado U)
https://sites.google.com/a/asu.edu/s-taliro/s-taliro

Breach (UC Berkeley)
http://www.eecs.berkeley.edu/~donze/breach_page.html

User input to falsifier

Closed-Loop Simulator

Optimization

Initial conditions / Parameters

Input-signal traces
Ye

s
N

o

Falsified? Target signals

Closed-Loop
System

Validation subsystem

6

Example – Air-to-Fuel Ratio Control Validation

The model is based on HSCC 2014 benchmark model:
Jin, X., Deshmukh, J. V., Kapinski, J., Ueda, K., Butts, K., “Powertrain Control Verification Benchmark”, HSCC 2014

AFR setpoint

O2 sensor signal

time

Input from
falsifier

Outputs to
falsifier

7

Engine Model Input/Output

Ambient pressure (bar)

Throttle angle command (deg)

Injection rate (g/s)

Engine speed (rpm)

Tolerances

Delayed throttle angle (deg)

Throttle air flow (g/s)

AFR sensor signal (-)

Engine Model

HSCC Benchmark model has Simulink-based engine model.
It was replaced with Simscape-based model here.
Their simulation results are identical.

8

Engine Dynamics 1 of 2 … Throttle, Intake & Fuel Injection

der(delayed_thr) == {-10 '1/s'}*(delayed_thr - thr_cmd);
thr_deg_noguard == delayed_thr + thr_rest;
%...
thetaHat == c6 + c7*thr_deg + c8*thr_deg^2 + c9*thr_deg^3;
%...
mdot_thr == {1 'g/s'}*dir*thetaHat*2*sqrt(p_d/p_u - (p_d/p_u)^2);
%...

der(p_mani) == RT_V*(mdot_thr - mdot_air_tocyl); % pdot=(R*T/V)*mdot
mdot_air_tocyl == tol_pump*(c2 + c3*w*p_mani + c4*w*p_mani^2 + c5*w^2*p_mani);

Throttle Air Flow Rate

Intake Manifold Pressure

kappa == tol_kappa * tablelookup(kappa_x1data, kappa_x2data, kappa_ydata, ...
eng_rpm, cyl_chg);

tau_ww == tol_tau_ww * tablelookup(tau_ww_x1data, tau_ww_x2data, tau_ww_ydata, ...
eng_rpm, cyl_chg);

der(m_fuel) == (1-kappa)*inj_cmd - m_fuel/tau_ww;
mdot_fuel_tocyl == kappa*inj_cmd + m_fuel/tau_ww;

Fuel Injection and Port Wet

9

Engine Dynamics 2 of 2 … Mean-Value Cylinder & Exhaust Dynamics

cyl_chg == mdot_air_tocyl/w * (4*pi) / Ncyl; % Air charge per cylinder
cyl_afr == mdot_air_tocyl / mdot_fuel_tocyl;

Simplistic Mean-Value Cylinder

cyl_delay == tablelookup(cyl_delay_x1data, cyl_delay_x2data, cyl_delay_ydata, ...
eng_rpm, cyl_chg);

delayed_afr == delay(cyl_afr, cyl_delay, ...
History=cyl_afr_pre, MaximumDelay=afr_delay_max);

der(exh_afr) == {-10 '1/s'}*(exh_afr - delayed_afr);
der(afr_sensor) == {-50 '1/s'}*(afr_sensor - exh_afr);

Exhaust AFR

Cylinder AFR

Exhaust AFR O2 sensor
signalEngine

speed
1000RPM

e.g.

10

Inputs to Controller
• Engine speed (rad/s)
• Throttle angle (deg)
• Throttle air flow (g/s)
• O2 sensor signal (-)

Tasks
• Power-on function
• Controller mode (normal or power) @10ms
• Injection command @10ms

Output from Controller
• Injection command (g/s)

Output for Validation
• Fuel control mode
• AFR setpoint

Controller (Sample Model)

Following MAAB Guideline
Control model architecture, Type A

11

Controller Mode/Reference Selection .. 10ms timer

AFR setpoint
Normal mode: 14.7
Power mode: 12.5

Controller mode
1 for feed-forward
0 for FF + feedback

Throttle angle

AFR sensor signal

Sensor fail?

Normal mode?

Power mode?

12

Fuel Controller .. 10ms timer

Throttle air flow

RPM

AFR setpoint

O2 sensor

Air estimation Feed-forward controller

Feedback PI controller

Injection command

Controller mode

Designing Requirements

𝐴 ⇒ 𝐵

If A happens, B must happen.

• 𝐴: Control mode switches from “power” to “normal” within 20ms.
• 𝐵: 𝜇 must settle within ±0.02 within 1 second and must stay there for 4 seconds.
• Always “𝐴 ⇒ 𝐵” must be true, i.e., whenever 𝐴 happens, 𝐵 must happen.

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 ℓ = power ∧ 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦(0,0.02)ℓ = normal ⇒ 𝑎𝑙𝑤𝑎𝑦𝑠 1,5 𝜇 < 0.02

𝜇 𝑡 =
𝜆𝑠𝑒𝑛𝑠 𝑡 − 𝜆𝑟𝑒𝑓(𝑡)

𝜆𝑟𝑒𝑓(𝑡)

e.g.

e.g. Settling Time Requirement

𝐴 𝐵

MTL/STL can represent system-level real-time control requirements.

Metric Temporal Logic (MTL) and Signal Temporal Logic (STL) allow the description of
temporal properties like above in a machine readable manner:

13

Normalized AFR error

t

14

𝜇 𝑡 =
𝜆𝑠𝑒𝑛𝑠 𝑡 − 𝜆𝑟𝑒𝑓(𝑡)

𝜆𝑟𝑒𝑓(𝑡)Controller

Engine
Pedal angle

Engine speed

Initialize Simulate Estimate robustness

Closed-Loop System

Falsified? Counter example
found

Requirement Falsification

Requirement falsifier tries to falsify requirements by simulation.
This is not property proving, not exhaustive, but can handle large-scale system.

e.g. min
t
(𝜇 − 0.02)

Yes

No

Normalized AFR error

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 𝜇 < 0.02e.g. Transient requirement

Writing Temporal Requirement for S-TaLiRo

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 ℓ = power ∧ 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦(0,0.02)ℓ = normal ⇒ 𝑎𝑙𝑤𝑎𝑦𝑠 1,5 𝜇 < 0.02

𝐴 ⋅ 𝑥 ≤ 𝑏
𝜇

Top-level outputspreds(3).str = ’muhigh';
preds(3).A = [1 0 0];
preds(3).b = 0.02 ;

preds(4).str = ’mulow';
preds(4).A = [-1 0 0];
preds(4).b = 0.02 ;

Constraint

preds(1).str = 'norm';
preds(1).A = [0 1 0];
preds(1).b = 0.5 ;

preds(2).str = 'pwr';
preds(2).A = [0 -1 0];
preds(2).b = -0.5 ;

ℓ

𝑥1

𝑥2

𝑥3

pwr

0.5≤ ℓ

norm

ℓ ≤ 0.5 −0.02 ≤ 𝜇

mulow

𝜇 ≤ 0.02

muhigh

15

e.g. Settling Time Requirement

Predicates

phi = ['[] ((pwr /\ <>_(0, 0.02) norm) -> ([]_(1, 5) mulow /\ muhigh))'];

Designing Parameters & Initial Conditions

e.g. Pulse Generator Block

set_param([model,'/Pedal Angle (deg)'],'Amplitude',num2str(X0(1)));
set_param([model,'/Pedal Angle (deg)'],'Period',num2str(X0(2)));

Initial conditions (block parameters) are randomly chosen within the specified range for
each simulation run by S-TaLiRo.

Suppose falsifier wants to vary
amplitude (deg) and period (s)
for each simulation run.

Initial_cond = [61.3 81.2 ; 10 20];

min max

X0(1) range

16

Designing Top-level Inputs

input_range = [900 1100];
cp_array = 1 ;
opt.interpolationtype={'const'};

Top-level inputs are manipulated by S-TaLiRo during a simulation run. The top-level inputs
receives different input traces from S-TaLiRo for each simulation run.

min

max

Top-level input Control points

time
0 t_end

Input range

Interpolation method
• Constant
• Piecewise constant
• Interp1’s methods

17

18

Counter exampleInitialize

Input signal traces

Simulate Estimate robustness Falsified?
Yes

No

Counter exampleReinitialize

Updated input signal traces

Simulate Estimate robustness Falsified?
Yes

No

Reinitialize

Updated input signal traces

Simulate Estimate robustness Falsified?

No @ max simulation runs

End with no counter example

Falsification Process

Counter example
Yes

19

Example Outputs from S-TaLiRo, #1

No counter example was found

Number of simulation runs

User-specified max simulation runs

Number of global resets

Best/min robustness value

Optimization progress hint

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 11,50 𝜇 < 0.02 (Normal mode only)

e.g. Transient requirement

20

Example Outputs from S-TaLiRo, #2

Falsified!

Negative robustness value

𝜑 ≔ 𝑎𝑙𝑤𝑎𝑦𝑠 ℓ = power ∧ 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦(0,0.02)ℓ = normal ⇒ 𝑎𝑙𝑤𝑎𝑦𝑠 1,5 𝜇 < 0.02

Power mode (1) to
Normal mode (0)

𝜇 < 0.02

1s 4s

e.g. Settling Time Requirement

21

Potential Improvement Points

Counter example(Re)Initialize

(Updated) Input signal traces

Simulate Estimate robustness Falsified?
Yes

No

Restart from arbitrary time point

Temporal logic for typical engineering cases,
such as signal oscillation

Parallelization Online estimation

Optimization of large complex logic

Generate inputs having engineering meanings,
or inputs to select certain modes

Set constraints among parameters, initial conditions, inputs

22

Re(Initialize)

(Updated) Input signal traces

Simulate Estimate robustness Falsified? Counter example
Yes

Coverage for No-counter Example Case

No @ max simulation runs

End with no counter example

“No counter example found”
… How much did the simulation cover?

Some coverage could be used as a stop condition, rather than maximum simulation runs.
However, such a coverage should cover both plant and controller.

P

C

P

C

P

C

…

MiL/SiL/HiL

23

O
p

ti
m

iz
e 𝑥0, 𝑝0

𝑢(𝑡)

Simulation-guided V&V Framework … Revisited and Updated

Counter
example

𝑦(𝑡)
Y

Temporal
Properties

Falsified?

Y

N

Coverage N
Max
iter?

Online
𝜌

Closed-loop simulator, plant modeling, code generation and high-performance computing
are also very import technologies to realize practical V&V environment.

Requirement falsifier

This could be
a coverage

24

Init

Input traces

Simulate Est 𝜌 Falsified?
Y

N

Find parameters
in requirement

Application of Falsification – Requirement Mining by Breach

Requirement
Template

𝑎𝑙𝑤 0,𝜏1 𝑥1 < 𝜋1 ⇒ 𝑒𝑣 0,𝜏2 𝑥2 > 𝜋2e.g. 𝑎𝑙𝑤 0,3 𝑥1 < 700 ⇒ 𝑒𝑣 0,0.2 𝑥2 > 0.1

Potential uses of requirement mining:
• Worst-case testing
• Signal range mining

Falsifier

Candidate Requirement

Counter
example

Inferred
Requirement

25

• Given its scalability, simulation-guided V&V such as requirement falsification is
promising and already practical technology for large-scale control system development.

• Gaps towards widespread use in industry need to be filled fast.

• Simulation-guided V&V methods were introduced.
• Requirement falsification
• Requirement mining
• (There are other simulation-guided V&V methods.)
• Not proving, not exhaustive, but can handle large-scale system

• MTL/STL can represent system-level real-time control requirements.
• Potential improvement points were identified.

• In dire need of a good engineering coverage.

Summary & Conclusion

Thank you.

