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Motivation

= EV’s rely on PMSM motors as their Main Traction Device

= Temperature Excursions in these Motors leads to loss of Torque efficiency
and eventual failures

= Need test these devices over possible Thermal Regimes
= Dyno testing is costly and can lead to degraded devices

=  Simulation is a must, but faster simulations are essential and Virtual Sensors
are bonus

Air gap
Stator winding

Cooling duct
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Reduced Order Modeling
High-fidelity model
What '

= Techniques to reduce the computational
complexity of a computer model

= Provide reduced, but acceptable fidelity

AT

Wh y Simulation time
High-fidelity model
= Enable simulation of FEA models in Simulink ROM

= Perform hardware-in-the-loop testing Reduced-Order Model (ROM)

= Develop virtual sensors, Digital twins

= Perform control design

= Enable desktop simulations for orders-of- sllii==
magnitude longer timescales o]
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~Increase Simulation Speed With Reduced Order Modeling

Them: s tiedaresuls m +

We have a big .csv file with measurement data from different experiments. :

clear

tt=readtable(
head(tt)

anbient ) ¢ torque X i stator yoke  stator tooth stator winding  profile id '>

The following measurements are our inputs:

+ Ambient Temperature

StatorYoke T
+ Coolant Temperature
+ Motor Voltage (dg-Frame)

+ Motor Curent (dg-Frame)

Winding T

Sectoa  Maimo.

» id=tt.profile_id;
t(:,1:5) tt(:,7:8)];

tt_data.anbient=novavg(tt_data.ambient, ,100);
tt_data.anbient=tt_data.ambient; =

Poflng dtals

Code Execution
Profiling

We want to predict the following values:

+ Permanent Magnet Temperature
+ Stator Yoke Temperature

+ Stator Tooth Temperature

+ Stator Winding Temperature
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Common Challenges in Operationalizing Models

f\""‘"\ High fidelity models, such as ones from 3" party FEA tools, are too slow
for system level simulation and HIL testing.

AIA Creating a ROM that produces desired results in terms of speed,
L~ accuracy, interpretability, etc.
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Integrating Al into Model-Based Design (Focus on Subsystem Models)

4 N\ [ N\ [ N\ ([ N\ ([ )
System

Design Implementation Integration
and Test

Functionality and

SEAUIEMERE Architecture

Continuous Testing, Verification, and Validation

Requirements verification Early design verification Virtual integration testing (SIL/PIL/HIL) Physical System Testing
f System \
Subsystem
models [ ¥ Physical hardware
System Architecture Physics-based
——— Behavior models S =t Al & Data-driven @
Functional spec - / \
L~
¥ :F’/ \ Component and
Algorithms - @% Syster_rll_ Aci.ceptance
- = esting

' - Environment model Environment model Real Environment
N VAN I AN Y, Y,

11 1 J

Digital Thread
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Al-driven system design

Data Preparation Al Modeling Simulation & Test Deployment

||||||‘|| Data cleansing and
preparation

9 Human insight

Model design and Integration with
tuning complex systems

. Embedded devices

% Enterprise systems

s Hardware - :
=55 accelerated training _D&l SPRE Sl

Simulation-

¢ Edge, cloud,
generated data

desktop

- — X System verification
‘}I: Intieiepereialing —5 ar>1/d validation




Al-driven system design

Data Preparation

||||||‘|| Data cleansing and
preparation

9 Human insight

Simulation-
generated data
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Data Source

Deep Residual Convolutional and Recurrent Neural
Networks for Temperature Estimation in Permanent
Magnet Synchronous Motors

Oliver Wallscheid Joachim Bécker

Wilhelm Kirchgiissner
Department of Power Electronics
and Electrical Drives
Paderborn University
33095 Paderborn, Germany
kirchgaessner@lea.uni-paderborn.de

Abstract—Most traction drive applications using permanent
magnet synchronous motors (PMSMs) lack accurate tempera-
ture monitoring capabilities so that safe operation Is ensured
through expensive, oversized materials at the cost of its effective
utilization. Classic thermal modeling Is conducted with e.g.
lumped-parameter thermal networks (LPTNs), which help to
estimate Internal component temperatures rather precisely but
also require expertise in choosing model parameters and lack
physical interpretability as soon as their degrees of freedom
are curtalled In order to meet the real-time requirement. In
this work, deep recurrent and convolutional neural networks
with residual connections are empirically evaluated for thelr
feasibility on the sequence learning task of predicting latent high-
dynamic temperatures inside PMSMs, which. to the authors’
best knowledge, has not been elaborated in previous literature.
In a highly utilized PMSM for electric vehicle applications, the
temperature profile In the stator teeth, winding, and yoke as well

Deparmment of Power Electronics
and Electrical Drives
Paderborn University

33095 Paderborn, Germany
wallscheid @lea.uni-paderborn.de

Department of Power Electronics
and Electrical Drives
Paderborn University

33095 Paderborn, Germany
boecker@lea.uni-paderbomn. de

precise thermal state, yet for the rotor part, it is techni-
cally and economically infeasible due to an electric motor's
sophisticated internal structure and the difficult accessibility
of the rotor. Stator temperature monitoring is realized with
thermal sensors, but these are usually firmly embedded in the
stator so that replacement is not an option, although sensor
functionality deteriorates steadily. Since competitive pressure
demands perpetual reduction of production costs, there is a
commercial interest driving the investigation of sufficiently
accurate real-time temperature estimation. In the last decades,
various research efforts led to approaches that approximate the
heat transfer process e.g. with equivalent circuit diagrams [2]
called lumped-parameter thermal networks (LPTNs). This kind
of model must forfeit physical interpretability of its structure

as. Ehe rolar‘s peramnent magneis are niodeled :‘hile llﬁlr groHnd and parameter values by significantly curtailinio degrees of ~
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Workflow —Data Preparation

Raw CSV Data
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ambient_movVar_winSiz: 1801E‘

motor_speed_movVar_winSize10.5

Additional Features

x10* Sorted Data

u_d_movAvg_winSize: 405%\

u_g_movAvg_winSize: 408E
~_speed_movAvg_winSize 406t

i_d_movAvg_winSiz 40%%\
-

i_g_movAvg_winSize. 4B§

—

onbill s
oolant_movVar_winSiz 1

u_d_movVar_winSize10.2

8

[
u_g_movVar_winSiz: 5[ A ‘ ‘

o) |

[ |

i_d_movVar_winSiz

0 10 20 30 40 50
Profiles

Sorted Data includes drive cycles of different lengths and Ambient Conditions,
DOE of design space to cover edge cases

Sorting helps to keep the mini-batch computation efficient with minimal padding



Profile Characteristics
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Al-driven system design

Al Modeling Simulation & Test

@ Model design and Integration with

tuning complex systems

s Hardware : :
=55 accelerated training _D&l SPRE Sl

- — X System verification
‘}I: Intieiepereialing —5 ar>1/d validation
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Al-Model Development

[l ==qusnceinput |
i =equencelnput ..
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A

r k4 " ” ¥

lstm_full fc_2
|n lstmLayer I ‘ a fullyConnected. ..
; ¥ . ¥

lstm_1 fc 3

lstmLayer fullyConnected. ..
. ¥ . J

drop_1 dropl

dropoutl syer dropautlaysr

X
lzakylstm relua
leshyRelulaysr leakyRelulaysr

Analysis for training in Deep Network Designer

Name: Network from Deep Network Designer
Analysis date: 15-Apr-2024 11:47:04

2M

total learnables

13

layers

04

warnings

00

errors

h
addibion1
additionl ayer

¥
g fc_1
fullyConnected. ..

; k
g fck
fultyConnected...

- ¥
PMSMiemp
regressionLayer

ANALYSIS RESULT =
J Mame Type Activations Learnable Proper... Stats
- 1 |sequenceinput Sequence Input 66(C) = 1(B)} = 1(T) - -
: fstm_wull el Ssquencs input with 66 dimensions
® Istm_1 fo_3 2 Istrn_full LSTM S573(C) = 1(B) = 1(T) InputWeig.. 2292 .. |Hide
¥ LSTM with 572 hidden units Recurrent.. 2292 .. |Cell
® drop_1 dropl Bias 2297 ..
1 = [isnt LSTM 191(C) = 1(8) = 1(T) Inputhieigh. 764 =. |Hidd
 lzalylsim A relua LSTA with 191 hidden units Recurrentll., 764 <. |Cell
S Bias 762 ..
“@ 2ddition1
4 |[drop_1 Dropout 191(C) = 1(B) = 1(T) - -
fo_i 85% dropout
5 | leakylstm Leaky RelU 191(C) = 1(8) = 1(T) - -
feX Leaky ReLU with scale 0.02
PMEMiEmp & |[fe2 Fully Connected 65(C) = 1(B)} = 1(T} Weights B6 x 66 -

66 fully connected layer

Bias 66 = 1

mean-squared-error

T|fc 3 Fully Connected 191(C) = 1(B) = 1(T) Weights 191 = &6 -
191 fully connected layer Bias 121 = 1

2 |dropl Cropout 191(C) = 1(B) = 1(T) - -
75% dropout

g relus Leaky RelU 191(C) = 1(B) = 1(T) - -
Leaky ReLU with scale 0.25

10 |additionl Addition 191(C) = 1{B) = 1(T) - -
Elemnent-wise sddition of 2 inputs
fc 1 Fully Connected a4(C) = 1(B) = 1(T) Weights 4 = 191 -
4 fully connected layer Eias 4 =1

12 [feX Fully Connected 4(C) = 1(B) = 1(T) Weights 4 = 4 -
4 fully connected layer Bias 4 %1

= [PMSMtemp Regression Qutput  [4(C) = 1(B) = 1(T) - -

12
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What Do we look in Training?

| IFAINING FrOgress | 1/ -APr-£Usa 1UI56133) - ) ~
- Results
Training Progress (17-Apr-2024 10:38:45)
Validation RMSE: 0.40112
Training finished: Max epochs completed
* Training Time
6 — Start time: 17-Apr-2024 10:38:45
Elapsed time: 193 min 3 sec
Training Cycle
oy = Epoch: 175 of 175
I Iteration: 1575 of 1575
II Iterations per epoch: ]
a 1 Maximum iterations: 1575
Validation
o |
g | Frequency 10 iterations
x
3 Other Information
| Hardware resource: Single GPU
Learning rate schedule: Piecewise
Sl Learning rate: 4.665e-06
Export asImage | [ Learn more

0 200 400 G600 800 1000 1200 1400 1600
Iteration

RMSE
o Training {smoothed)
S Training
— —8— - Validation
Loss
Training (smoothed)
Training
100 — —@— - Validation
e i 1 L | 1 L 1 S Final
200 400 G00 800 1000 1200 1400 1600

Iteration
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Testing Results on a long profile
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predicted

predicted predicted

predicted

L‘O—\I\)

PM temp
0.98499
-2 -1 0 1 2
measured

measured

2 0 1 2

measured

. 0.99402
-2 -1 0 1 2
measured

PM temp error

L

-0.4 -0.2 0 0.2 0.4

Stator yoke error

50007 ‘
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-0.4 -0.2 0 0.2 0.4

Stator tooth error

5000F |
0
-0.4 -0.2 0 0.2 0.4

4000
2000

0
-0.4 -0.2 0 0.2 0.4

Stator winding error

 dbe

All correlation values are about 0.99 and error distribution is unbiased hence
model captures trend and Magnitude
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Test Results for a short profile

PM temp
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-1 predict
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measured
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PM temp error
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All correlation values are about 0.99 and error distribution is unbiased hence

model captures trend and Magnitude
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Deployment to Simulink

7%;
|+ 4| Scope = [m] X

15 P+ File Tools View Simulation Help £

G- 40P @ > A |FA-

P sequenceinput PMSMtemp ——
Predictofs d Temperatures

DL-PMSMmodel

StatorTeeth T

A

o

\ S/
\ 4
+
YVYYY

StatorYoke_T

Winding T

Ready Sample based |T=15000.000 |
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MATLAB works with Python-based frameworks

Framework Interoperability bridges the gap between data science, engineering and production

o

TensorFlow PyTorch ONNX

Python Python Python
b [ outtp Nim out1p Yt out1

Scikit-learn Custom

P}'T’Dmh Python ® e Python
Ax ./-,‘9. yitp Nint out1 P
17 Al Modeling -

Converter for
TensorFlow Models

MATLAB

TensorFlow ]

MATLAB

Converter for
ONNX Model Formar

Other
Frameworks

Converter for
PyTorch Models



https://www.mathworks.com/products/deep-learning.html#frm

Al-driven system design

MathWorks AUTOMOTIVE CONFERENCE 2024

Deployment

. Embedded devices

% Enterprise systems

¢ Edge, cloud,
desktop

18
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Model compression reduces Model for Deployment (educes leamabie from 2m to 850 k)

Structural Compression

fP:R? > R?
f:R3 > R? 4
P R
O
fEx) = ] )W) (v, )
Pruning Projection of deep
convolutional neural neural networks

networks
We’ll take a closer

look at the projection
technique in today’s
workshop

19

Datatype Compression

mmmmmm

Quantization of network
weights to lower precision
datatypes (bfloatl6, int8)

Deployment

19


https://www.mathworks.com/company/newsletters/articles/compressing-neural-networks-using-network-projection.html
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Compressed Network

4\ Deep Leaming Network Analyzer = O ® 4\ Deep Learning Network Analyzer = O X
Analysis for trainNetwork usage Analysis for dinetwork usage
Name: net

0 o Name: netProjected 738 12

ermo Analysis date: 17-Apr-2024 15:02:39

Analysis date: 17-Apr-2024 15:02:18

errors
ANALYSIS RESULT [©) o
A Name Type Activations Learnable Proper... State A Name Type Activations Learnable Proper... State
- = B - - - - q = B - -
ofatm_ul oz T |sequenceinput Sequence Input 85(C) = 1(E) = LT} ol fal s 1 | sequenceinput Sequence Input 65(C) = 1(B) = 1(T)
! Sequence input with 66 dis b =
o istm_1 o3 = [1stm_full LSTM 573(C) * 1(8) = U(T) Inputlleig.. 2292 .. [Hidd o istm_1 o3 2 Projected Layer 573(C) * 1(8) * L(T) Metw. 1. dlnetw. -
t I with 573 hidden units Recurrent.. 2282 Cell 1
# drop_1 drop Blas 2292 - ® drop_t1 drop1 3 istm_1 Projected Layer 191(C) = 1(8) = 1(T) Netw. 1. dlnetw. |-
" . . 3 istm 1 LSTM 191(C) = 1(8) = 1(T) InputWeigh., 764 x. |Hidd Y
& Jeakylstm relua ; N . ® Jeakylstm #reiua
" . M with 191 hidden units Recurrentil, 784 =. |Cell " o a Dropout 191(C) = 1(B) = 1(T) - -
- Bias 764 .. _
'® addition1 '® addition1
4 Dropout 191(C) = 1(8) = 1(T) - - A\ 5 Leaky RelU 191(C) = 1(B) = 1(T) - -
®dc_1 efc_1
1 s Lesky Rell 191(C) = 1(8) = 1(T) - - 1 B . x « |-
® iex Y L iex 6 Projected Layer 66(C) = 1(B) * 1(T) Mete.. 1 . dlnetw.
1
& PMSMi=mp 6|2 Fully Cennected 65(C) = 1(B) = 1(T) ueignts 56 x 66 - EREE] Projected Layer 191(C) = 1(B) = 1(T) Metw. 1. dlnetw. |-
66 fully connected layer Bias 86 = 1 Projected fully connected layer with outp.
7 |fc3 Fully Connected 191(C) = 1(8) = 1(T) Weights 191 = 66 - 2 |dropl Dropout 191(C) = 1(8) = 1(T) - -
191 fully connectad layer Bias 191 = 1 75% d ut
8 Dropout 191(C) = 1(8) = 1(T) - - s |relua Leaky RelU 191(C) = 1(8) = 1(T) - -
Leaky RelU
B Leaky Rell 191(C) = 1(8) = 1(T) - - o |addition1 Addition 191(C) = 1(8) = 1(T) - -
Element-wise additior
10 |additionl Addition 191(C) = 1(8) = 1(T) - - Projected Layer 4(C) = 1(B) = UT) Metv. 1. dlnetw.. |-
Element-wise addition puts Inected layer with outp.
fc 1 Fully Connected 4(C) = 1(B) = 1(T) Weignts 4 = 191 - 2 |feX Projected Layer 4(C)y = 1(B) * 1(T) Metw. 1 . dInetw.. |-
4 fully connected laysr Bias 4 %1 Projected fully connected layer with cutp.
2 |fex Fully Connected 4(C) = 1(8) > UT) Meignts 4 x4 -
4 fully connected layer Bias 4 x1
= |PMSMtemp Regression Qutput | 4(C) = 1(3) = 1(T) - -
mean-squared-error with response ‘Resp...
4 » 4 I3

Original Projected

Approximately 25X reduction in Size

20 Deployment

20



Code Generation For HIL/SIL tes

@ Web Browser - Code Generation Report

MathWorks AUTOMOTIVE CONFERENCE 2024

- o
BEmBO0

4 o 3| | #h | Location: file///C:/Shyams_OIdPC/MATLAB/Projects/SurrogateDL/PMSMSim_grt_rtw/htm/index.html

“

Content

Summary
Subsystem Report
Code Interface Report

Code

~ Model files
PMSMSim.cpp
PMSMSim.h
PMSMSim_private h
PMSMSim_types.h

~ Utility files
builtin_typeid_types.h
multiword_types.h
rGetlnf.cpp
rtGetinf.h
rtGetNaN.cpp
rtGetNaN.h
rt_nonfinite.cpp
rt_nonfinite.h
rtwtypes.h

~ Interface files
rtmodel.h

~ Other files
1t_logging.c

Code Interface Report for PMSMSim

Table of Contents

Entry-Point Functions
* Inports

Outports

Interface Parameaters
Data Stores

Entry-Point Functions

Function: PMSMSim_initialize

PMSMSim ¥

Code Generation Report
+

Prototype
Description
Timing
Arguments
Return value
Header file

ize(void)
Initialization entry point of generated code
Must be called exactly once

None

None

PMSMSim.h

Function: PMSMSim_step

Prototype
Description
Timing
Arguments
Return value

Header file

void PMSMSim_step(void)

Output entry point of generated code
Must be called periodically, every 1 second
None

None

PMSMSim.h

Function: PMSMSim_terminate

Prototype void PMSMSim_terminate(void)
Description Termination entry point of generated code
Timing Moust be called exactly once

Arguments None

Return value None

Header file PMSMSim.h

Inports

No Inports in model.

Outports

No Outports in medel.

Interface Parameters

No interface/tunable parameters in model.

Data Stores

No data stores in the model; note that this report lists only data stores with non-auto storage class and global data stores

21
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Examine Generated Code

=

=

[/ your application needs. This example simply sets an error status in the
[/ real-time model and returns from rt_OneStep

I

void rt_Onestep(veid);

[Evoid rt_oneStep(void)

static boolean_T GverrunfFlag{ false };
// Disable interrupts here

1/ Check for overrun
if (Overrunflag) {

. rtmSetErrorStatus(PMSMSim_Obj.getRTM(), "Overrun™):

| return;

OverrunFlag = true;

// Save FPU context here (if necessary)
/{ Re-enable timer or interrupt here
/4 Set model inputs here

// Step the model
PMSMSim_Obj.step();

// Indicate task complete
OverrunFlag = false;

// Disable interrupts here
// Restore FPU context here (if necessary)

! // Get model outputs here
|}/ Enable interrupts here
}

=0

// The example main function illustrates what is required by your

// application code to initialize, execute, and terminate the generated code.
f/ Attaching rt_OneStep to a real-time clock is target specific. This example
f/ illustrates how you do this relative to initializing the model.

/

=int_T main(int_T argec, const char *argv[])

/4 Unused arguments
(woid)(argec);
(woid)(argv);

// Initialize model
PMSMSim_Obj.initialize();

// Attach rt_OneStep to a timer or interrupt service routine with

// period 1.8 seconds (base rate of the model) here.

/4 The call syntax for rt_OneStep is

/"

1/ rt_OneStep();

printf("Warning: The simulation will run forever. "
“Generated ERT main won't simulate model step behavior.
"To change this behavicr select the 'MAT-file logging' option.'n");

fflush((nullptr));

while (rtmGetErrorStatus(PMSMSim_Obj.getRTM()) == (nullptr)) {

i // Perform application tasks here

}

/4 Terminate model
prsMsim Obq.terminate();

MathWorks AUTOMOTIVE CONFERENCE 2024
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Key takeaways

Hardware-in-the-Loop (HIL) testing and system-level
simulation for high-fidelity models.

Enable

Explore Various ROM technigues in MATLAB to find the best method.

23
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Conclusions

- MathWorks Tools Makes Data to Digital Twins(ROM) workflow easy

= An e-Motor ROM predicts e-Motor’s all internal temperatures with similar
trends and magnitudes as real data.

= ROM incorporation into Simulink with built-in infrastructure allows SIL/HIL
testing faster and easier
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