
1© 2018 The MathWorks, Inc.

Deep Learning in

From Concept to Embedded Code

Alexander Schreiber
Principal Application Engineer

MathWorks Germany

MathWorks Automotive Conference 2018

Stuttgart

April 17th, 2018



2

Example: Lane Detection

Transfer Learning

Alexnet

Lane detection 

CNN

Post-processing 

(find left/right lane 

points)
Image

Image with 

marked lanes

Left lane coefficients

Right lane coefficients

Output of CNN is lane parabola coefficients according to: y = ax^2 + bx + c

GPU coder generates code for whole application

https://devblogs.nvidia.com/parallelforall/deep-learning-automated-driving-matlab/


3

Example: Lane Detection
Import of Pre-Trained

Network



4

Example: Lane Detection
Import of Pre-Trained

Network

Modification of Network 

Architecture



5

Example: Lane Detection
Import of Pre-Trained

Network

Modification of Network 

Architecture

Transfer Learning



6

Example: Lane Detection
Import of Pre-Trained

Network

Modification of Network 

Architecture

Transfer Learning

Verification



7

Example: Lane Detection
Import of Pre-Trained

Network

Modification of Network 

Architecture

Transfer Learning

Verification

Autom. CUDA

Code Generation



8

Example: Lane Detection
Import of Pre-Trained

Network

Modification of Network 

Architecture

Transfer Learning

Verification

Autom. CUDA

Code Generation

mex

Verification



9

Example: Lane Detection
Import of Pre-Trained

Network

Modification of Network 

Architecture

Transfer Learning

Verification

Autom. CUDA

Code Generation

mex

Verification

Deployment to

embedded GPU



10

MATLAB Deep Learning Framework

Access Data Design + Train Deploy

▪ Manage large image sets

▪ Automate image labeling

▪ Easy access to models

▪ Automate compilation to 

GPUs and CPUs using 

GPU Coder:
▪ 11x faster than TensorFlow

▪ 4.5x faster than MXNet

▪ Acceleration with GPU’s

▪ Scale to clusters



11

Deep Learning Workflow

Files

Databases

Sensors

ACCESS AND EXPLORE

DATA

DEVELOP PREDICTIVE

MODELS

Hardware-Accelerated 

Training

Hyperparameter Tuning

Network Visualization

LABEL AND PREPROCESS

DATA

Data Augmentation/ 

Transformation 

Labeling Automation

Import Reference 

Models

INTEGRATE MODELS WITH

SYSTEMS

Desktop Apps 

Enterprise Scale Systems 

Embedded Devices and 

Hardware



12

Deep Learning Workflow

Files

Databases

Sensors

ACCESS AND EXPLORE

DATA

DEVELOP PREDICTIVE

MODELS

Hardware-Accelerated 

Training

Hyperparameter Tuning

Network Visualization

LABEL AND PREPROCESS

DATA

Data Augmentation/ 

Transformation 

Labeling Automation

Import Reference 

Models

INTEGRATE MODELS WITH

SYSTEMS

Desktop Apps 

Enterprise Scale Systems 

Embedded Devices and 

Hardware

Files

Databases

Sensors

ACCESS AND EXPLORE

DATA

DEVELOP PREDICTIVE

MODELS

Hardware-Accelerated 

Training

Hyperparameter Tuning

Network Visualization

INTEGRATE MODELS WITH

SYSTEMS

Desktop Apps 

Enterprise Scale Systems 

Embedded Devices and 

Hardware



13

Ground Truth Labeling

▪ Adding Ground Truth Information

▪ Semi-automated Labeling

– Object Detection

– Scene Classification

– Semantic Image Segmentation

▪ Solutions

– Ground Truth Labeler App

– Image Labeler App

LABEL AND

PREPROCESS DATA



14

Importing Reference Models (e.g. AlexNet) LABEL AND

PREPROCESS DATA



15

Importing Reference Models (e.g. AlexNet) LABEL AND

PREPROCESS DATA



16

DEVELOP PREDICTIVE

MODELS

Hardware-Accelerated 

Training

Hyperparameter Tuning

Network Visualization

Deep Learning Workflow

Files

Databases

Sensors

ACCESS AND EXPLORE

DATA

DEVELOP PREDICTIVE

MODELS

Hardware-Accelerated 

Training

Hyperparameter Tuning

Network Visualization

LABEL AND PREPROCESS

DATA

Data Augmentation/ 

Transformation 

Labeling Automation

Import Reference 

Models

INTEGRATE MODELS WITH

SYSTEMS

Desktop Apps 

Enterprise Scale Systems 

Embedded Devices and 

Hardware

Files

Databases

Sensors

ACCESS AND EXPLORE

DATA

LABEL AND PREPROCESS

DATA

Data Augmentation/ 

Transformation 

Labeling Automation

Import Reference 

Models

INTEGRATE MODELS WITH

SYSTEMS

Desktop Apps 

Enterprise Scale Systems 

Embedded Devices and 

Hardware



17

Two Approaches for Deep Learning 

▪ Reusing existing feature 

extraction

▪ Adapting to specific needs

▪ Requires

– Smaller training data set

– Lower training time

▪ Tailored and optimized to

specific needs

▪ Requires

– Larger training data set

– Longer training time

2. Fine-tune a pre-trained model (transfer learning)

1. Train a Deep Neural Network from Scratch 

DEVELOP

PREDICTIVE MODELS



18

Transfer Learning DEVELOP

PREDICTIVE MODELS



19

Transfer Learning DEVELOP

PREDICTIVE MODELS



20

Transfer Learning DEVELOP

PREDICTIVE MODELS



21

Accelerating Training (CPU, GPU, multi-GPU, Clusters)

More GPUs

M
o

re
 C

P
U

s
DEVELOP

PREDICTIVE MODELS



22

Accelerating Training (CPU, GPU, multi-GPU, Clusters)

 

Multiple GPU support

More GPUs

Single GPU performance

DEVELOP

PREDICTIVE MODELS



23

Hyperparameter Tuning (e.g. Bayesian Optimization)

▪ Goal

– Set of optimal hyperparamters for a 

training algorithm

▪ Algorithms

– Grid search

– Rando search

– Bayesian optimization

▪ Benefits

– Faster training

– Better network performance

DEVELOP

PREDICTIVE MODELS



24

Visualizing and Debugging Intermediate Results

Filters
…

Activations

Deep Dream

Training Accuracy Visualization Deep Dream

Layer Activations Feature Visualization

• Many options for visualizations and debugging
• Examples to get started

DEVELOP

PREDICTIVE MODELS



25

INTEGRATE MODELS WITH

SYSTEMS

Desktop Apps 

Enterprise Scale Systems 

Embedded Devices and 

Hardware

Deep Learning Workflow

Files

Databases

Sensors

ACCESS AND EXPLORE

DATA

DEVELOP PREDICTIVE

MODELS

Hardware-Accelerated 

Training

Hyperparameter Tuning

Network Visualization

LABEL AND PREPROCESS

DATA

Data Augmentation/ 

Transformation 

Labeling Automation

Import Reference 

Models

INTEGRATE MODELS WITH

SYSTEMS

Desktop Apps 

Enterprise Scale Systems 

Embedded Devices and 

Hardware

Files

Databases

Sensors

ACCESS AND EXPLORE

DATA

DEVELOP PREDICTIVE

MODELS

Hardware-Accelerated 

Training

Hyperparameter Tuning

Network Visualization

LABEL AND PREPROCESS

DATA

Data Augmentation/ 

Transformation 

Labeling Automation

Import Reference 

Models



26

Algorithm Design to Embedded Deployment Workflow

MATLAB algorithm

(functional reference)

Functional test1 Deployment 

unit-test

2

Desktop 

GPU

C++

Deployment 

integration-test

3

Desktop

GPU

C++

Real-time test4

Embedded GPU

.mex .lib/.dll Cross-compiled

.lib

Build type

Call CUDA 

from MATLAB 

directly

Call CUDA from 

(C++) hand-

coded main()

Call CUDA from (C++) 

hand-coded main(). 

INTEGRATE MODELS

WITH SYSTEMS

(Test in MATLAB on host) (Test generated code in 

MATLAB on host + GPU)

(Test generated code within 

C/C++ app on host + GPU)

(Test generated code within 

C/C++ app on Tegra target)



27

GPUs and CUDA

CUDA

kernels
C/C++

ARM

Cortex

GPU

CUDA Cores

C/C++

CUDA Kernel

C/C++

CUDA Kernel

GPU Memory 

Space

CPU Memory 

Space

INTEGRATE MODELS

WITH SYSTEMS



28

Challenges of Programming in CUDA for GPUs

▪ Learning to program in CUDA

– Need to rewrite algorithms for parallel processing paradigm

▪ Creating CUDA kernels

– Need to analyze algorithms to create CUDA kernels that maximize parallel processing

▪ Allocating memory

– Need to deal with memory allocation on both CPU and GPU memory spaces

▪ Minimizing data transfers

– Need to minimize while ensuring required data transfers are done at the appropriate 

parts of your algorithm

INTEGRATE MODELS

WITH SYSTEMS



29

GPU Coder Compilation Flow

Benefits:

▪ MATLAB as single golden 

reference

▪ Much faster conversion

from MATLAB to CUDA

▪ Elimination of manual

coding errors

▪ No expert-level expertise

in parallel computing

needed

GPU Coder

CUDA Kernel creation

Memory allocation

Data transfer minimization

• Library function mapping

• Loop optimizations

• Dependence analysis

• Data locality analysis

• GPU memory allocation

• Data-dependence analysis

• Dynamic memcpy reduction

INTEGRATE MODELS

WITH SYSTEMS



30

GPU Coder Output INTEGRATE MODELS

WITH SYSTEMS



31

Deep Learning Network Support (with Neural Network Toolbox)

SeriesNetwork DAGNetwork

GPU Coder: R2017b

Networks: MNist

Alexnet

YOLO

VGG

Lane detection

Pedestrian detection

GPU Coder: R2018a

Networks: GoogLeNet

ResNet

SegNet

FCN

DeconvNet

Semantic 

segmentation

Object 

detection

INTEGRATE MODELS

WITH SYSTEMS



32

Semantic Segmentation

Running in MATLAB Generated Code from GPU Coder

INTEGRATE MODELS

WITH SYSTEMS



33

Algorithm Design to Embedded Deployment

MATLAB algorithm

(functional reference)

Functional test1 Deployment 

unit-test

2

Tesla 

GPU

C++

Deployment 

integration-test

3

Tesla 

GPU

C++

Real-time test4

Tegra GPU

.mex Cross-compiled

.lib

Build type

Call CUDA 

from MATLAB 

directly

Call CUDA from 

(C++) hand-

coded main()

Call CUDA from (C++) 

hand-coded main(). 

Cross-compiled on host 

with Linaro toolchain

INTEGRATE MODELS

WITH SYSTEMS

.lib/.dll



34

Alexnet Inference on NVIDIA Titan Xp

GPU Coder +

TensorRT (3.0.1)

GPU Coder +

cuDNN

F
ra

m
e
s
 p

e
r 

s
e
c
o
n
d

Batch Size

CPU Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz

GPU Pascal Titan Xp

cuDNN v7

Testing platform

MXNet (1.1.0)

GPU Coder +

TensorRT (3.0.1, int8)

TensorFlow (1.6.0)

INTEGRATE MODELS

WITH SYSTEMS



35

Algorithm Design to Embedded Deployment

MATLAB algorithm

(functional reference)

Functional test1 Deployment 

unit-test

2

Tesla 

GPU

C++

Deployment 

integration-test

3

Tesla 

GPU

C++

Real-time test4

Tegra GPU

.mex Cross-compiled

.lib

Build type

Call CUDA 

from MATLAB 

directly

Call CUDA from 

(C++) hand-

coded main()

Call CUDA from (C++) 

hand-coded main(). 

Cross-compiled on host 

with Linaro toolchain

INTEGRATE MODELS

WITH SYSTEMS

.lib/.dll



36

Alexnet Deployment to Tegra: Cross-Compiled with ‘lib’

Two small changes

1. Change build-type to ‘lib’

2. Select cross-compile toolchain

INTEGRATE MODELS

WITH SYSTEMS



37

0

50

100

150

200

250

300

350

400

1 16 32 64 128 256

Alexnet Inference on Jetson TX2: Performance

MATLAB GPU Coder 
(R2017b)

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

Batch Size

C++ Caffe 
(1.0.0-rc5)

TensorRT (2.1)

2x

0.85x

INTEGRATE MODELS

WITH SYSTEMS



38

Deploying to GPUs and CPUs

GPU 

Coder

Deep Learning 

Networks

NVIDIA

cuDNN

& TensorRT

Libraries

ARM

Compute

Library

Intel

MKL-DNN

Library

INTEGRATE MODELS

WITH SYSTEMS



39

Deploying to GPUs and CPUs

GPU 

Coder

Deep Learning 

Networks

NVIDIA

cuDNN

& TensorRT

Libraries

ARM

Compute

Library

Intel

MKL-DNN

Library

Desktop CPU

Raspberry Pi board

INTEGRATE MODELS

WITH SYSTEMS



40

Deep Learning in MATLAB

▪ Integrated Deep Learning Framework

– Data Access and Preprocessing

– Deep Learning Network Design and Verification

– Integration within larger System

▪ Acceleration through GPU and Parallel Computing

– Training

– Inference

▪ Deployment through automatic CUDA Code Generation

– Desktop GPU

– Embedded GPU

ACCESS AND EXPLORE

DATA

DEVELOP PREDICTIVE

MODELS

LABEL AND PREPROCESS

DATA

INTEGRATE MODELS WITH

SYSTEMS



41

GPU Coder for Deployment

Deep Neural Networks 1,2,3

Deep Learning, machine learning

Image Processing and 

Computer Vision 2

Image filtering, feature detection/extraction

Signal Processing and 

Communications 2

FFT, filtering, cross correlation, 

5x faster than TensorFlow

2x faster than MXNet

60x faster than CPUs 

for stereo disparity

20x faster than 

CPUs for FFTs

GPU Coder
Accelerated implementation of 

parallel algorithms on GPUs & CPUs

ARM 3

Compute

Library

Intel 1

MKL-DNN

Library

2



42

GPU Coder for Image Processing and Computer Vision

8x speedup

Distance 

transform

5x speedup

Fog removal

700x speedup

SURF feature 

extraction

18x speedup

Ray tracing

3x speedup

Frangi filter



43

Design Your DNNs in MATLAB, Deploy with GPU Coder

Access Data Design + Train Deploy

▪ Manage large image sets

▪ Automate image labeling

▪ Easy access to models

▪ Automate compilation to 

GPUs and CPUs using 

GPU Coder:
▪ 11x faster than TensorFlow

▪ 4.5x faster than MXNet

▪ Acceleration with GPU’s

▪ Scale to clusters



44

Questions?



45

Thank You!


