

Analyzing Fleet Data with MATLAB and Spark

Christoph Stockhammer

MathWorks AUTOMOTIVE CONFERENCE 2018

What does "Fleet" mean?

 A "Fleet" is any group of things that can generate data and that you would like to look at all together. Examples include:

Automotive Fleet Data

What is the fleet data telling us?

How's my driving?

How do Customers Apply Analytics to Fleet Data?

- Batch processing
- Large data on cluster
- Explore long term trends
- Build model

Streaming data:

- Near real-time
- Test and implement model for new data
- Stream processing

Hot Storage

Cold Storage

Analytics Running on Hadoop and Spark (Video)

Browse Directory

Major Logistical Barriers to Working with Automotive Fleet Data

- Here is a Hard Drive full of vehicle log data (GB or TB), now what? Oh and by the way, there are a bunch more of these coming soon...
 - Pains
 - Large, non-text data
 - Lack of clarity "what should I do with this"?
 - Time pressure to get the analysis done
- My data is in Hadoop, now what? or My data is supposed to go into Hadoop, now what?
 - Pains
 - Giant binary files not well suited to "drop into" HDFS
 - Fear of loosing control of one's data hand data off to "another group"...
 - Fear of a "new system" Hadoop can be scary, Linux, yikes!

Have you Ever Wondered...?

- How different factors affect how a particular driver drives?
- Real-world vehicle performance of things like: fuel economy, emissions, vehicle dynamics, ride and handling, prognostics, and durability?
- How do you work with terabytes of data to distill out critical information?
- Once you do have the critical information, how to you iterate back through your terabytes of data to extract relevant (time) slices for further study or analysis?

So, what's the (big) problem?

- Traditional tools and approaches won't work
 - Accessing the data is hard; processing it is even harder
 - Need to learn new tools and new coding styles
 - Have to rewrite algorithms, often at a lower level of abstraction

- Quality of your results can be impacted
 - e.g., by being forced to work on a subset of your data
 - Learning new tools and rewriting algorithms can hurt productivity
- Time required to conduct analysis
 - Need to leverage parallel computing on desktop and cluster

MathWorks Vehicle Fleet – Case Study

Challenge

 Develop and deploy Data Analytics to run on Spark against (non-text format) vehicle fleet data stored on Hadoop

Solution

 Use MATLAB tall arrays to develop analytics on the desktop and then scale out to the Hadoop cluster

Results

- Developed insight and understanding of over 1300 vehicle trips
- Illustrated fuel efficiency performance under real-world driving conditions

Volkswagen Data Lab develops driver recognition algorithms with MATLAB

Develop technology building block for tailoring car features and services to individual

 Need to identify individual drivers based on their driving behavior using collected data

Challenges

- Accuracy despite low training data
- Robustness despite environmental conditions
- Computing time

MathWorks

AUTOMOTIVE CONFERENCE

Data sources

Logged CAN bus data and travel record

Source: "Connected Car – Fahrererkennung mit MATLAB"
Julia Fumbarev, Volkswagen Data Lab
"MATLAB EXPO Germany, June 27, 2017, Munich Germany

Observations: 351 Predictors: 34 Response Variable:

Prediction speed: ~8500 obs/sec

raining Time: 2 4782 sec

Data Analytics Workflow

Access and Explore Data

Files

Databases

Sensors

Preprocess Data

Working with **Messy Data** Data Reduction/ **Transformation** Feature **Extraction**

Develop
Predictive Models

ntegrate Analytics with Systems

MathWorks
AUTOMOTIVE CONFERENCE 2018

What about messy data?

How do deal with outliers?

New functions to help you with:

- Missing Data and Outliers
- Detecting Change Points
- Smoothing and Detrending
- Normalizing and Scaling
- Grouping and Binning

MathWorks Automotive Fleet – Data Collection

The MathWorks Fleet

- 1300 trip log files
- 21 unique vehicles
- Approx 39 unique channels
- Data collected over 1.5 years

Automotive Vehicle Test Fleets – Lots of Data and Lots of Complexity

AUTOMOTIVE CONFERENCE 2018

Access and Explore Data

The Data: Timestamped messages with JSON encoding

```
"vehicles id": {"$oid":"55a3fd0069702d5b41000000"},
         {"$date":"2015-07-13T18:01:35.000Z"}
                                                 Timestamp
"kc": 1975.0, "kff1225": 100.65293, "kff125a": 110.36619, ...
                                                                 Values
  "vehicles id": {"$oid":"55a3fe3569702d5c5c000020"}
           $date":"2015-07-13T18:01:53.000Z"},
      : 2000.0, "kff1225" : 109.65293, "kff125a" : 115.36619,
        "vehicles id": {"$oid":"55a4193569702d115b000001"}
        "time":{"$date":"2015-07-12T19:04:04.000Z"}
        "kc":2200.0, "kff1225" : 112.65293, "kff125a" : 112.36619,
```


1

Access and Explore Data

Access a Sample of Data

Raw Data

		1	2
	timestamp	value	key
1	15-Jan-2015 22:12:23	'{ "_id" : { "\$oid" : "55a41cb069702d115b059ee0" }, "trip_id" : { "\$oid"	'55a41cb069702d115b059ede'
2	15-Jan-2015 22:12:24	'{ "_id" : {	'55a41cb069702d115b059ede'
3	15-Jan-2015 22:12:25	'{ "_id" : {	'55a41cb069702d115b059ede'
4	15-Jan-2015 22:12:26	'{ "_id" : {	'55a41cb069702d115b059ede'

- ✓ Decode JSON data
- ✓ Create Timetable

Timetable

t = 4647×40 timetable

	trip_id	VIN	kff1001	kff1005	kff1006	kff1220	kff1221	kff1222	kff1223	kff125a
1 Sun Jul 12 16:18:41 UTC 2015	55a3fe356	55a3fe356	17.1000	-84.9323	45.4704	NaN	NaN	NaN	NaN	59.043
2 Sun Jul 12 16:18:42 UTC 2015	55a3fe356	55a3fe356	17.1000	-84.9322	45.4704	NaN	NaN	NaN	NaN	57.860
3 Sun Jul 12 16:18:43 UTC 2015	55a3fe356	55a3fe356	18.9000	-84.9322	45.4705	NaN	NaN	NaN	NaN	52.714
4 Sun Jul 12 16:18:44 UTC 2015	55a3fe356	55a3fe356	18.9000	-84.9322	45.4705	NaN	NaN	NaN	NaN	51.198
5 Sun Jul 12 16:18:45 UTC 2015	55a3fe356	55a3fe356	18.0000	-84.9321	45.4706	NaN	NaN	NaN	NaN	49.109
6 Sun Jul 12 16:19:13 UTC 2015	55a3fe356	55a3fe356	58.5000	-84.9305	45.4686	NaN	NaN	NaN	NaN	73.200
7 Sun Jul 12 16:19:14 UTC 2015	55a3fe356	55a3fe356	56.7000	-84.9304	45.4685	NaN	NaN	NaN	NaN	75.36
8 Sun Jul 12 16:19:15 UTC 2015	55a3fe356	55a3fe356	57.6000	-84.9304	45.4683	NaN	NaN	NaN	NaN	70.75
9 Sun Jul 12 16:19:16 UTC 2015	55a3fe356	55a3fe356	56.7000	-84.9303	45.4682	NaN	NaN	NaN	NaN	62.834

tall arrays R2016b

- What is a tall?
 - Tall is a new data type and a new way of working with Big Data in MATLAB (introduced in R2016b).
- Lots of observations.
 - Tall refers to data types and algorithms for use with data that has more rows than will fit into the memory of a single machine or cluster.
- Looks like a normal MATLAB array
 - Supports numeric types, tables, datetimes, strings, etc...
 - Supports several hundred functions for basic math, stats, indexing, etc.
 - Statistics and Machine Learning Toolbox support (clustering, classification, etc.)

tall arrays R2016b

- Automatically breaks data up into small "chunks" that fit in memory
- Tall arrays scan through the dataset one "chunk" at a time
- Processing code for tall arrays is the same as ordinary arrays

Workflow Pattern

- Access out of memory data
- Work with subsets of your data
- Develop functions for event detection and calculation
- Apply functions to all of your data
- Aggregate, summarize, & visualize

- datastore & tall
- findgroups, splitapply, cellfun
- Normal MATLAB code
- cellfun
- table, histogram, heatmap, boxplot, binScatterPlot

Enterprise Integration

Integrate MATLAB analytics into your technology stack

Platform

Key Takeaways

- Achieve success in Vehicle Fleet Analytics by utilizing new MATLAB data types, specifically tall Arrays for out of memory data sets
- Leverage timetables and the functions built to work on them to help do the difficult time-series tasks (synchronize and retime)
- Scale your work up with parallel computing toolbox on the desktop or the MATLAB Distributed Computing Server on Hadoop

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.