

Applying Artificial Intelligence to Product Development

Sebastian Bomberg, Application Engineering

Diverse Set of Automotive Customers use MATLAB for Al

Cloud Based Data Labeling

Radar Sensor Verification

Ground Detection

Automotive Part Defect Detection

Outline

Network Design and Training

CUDA and TensorRT Code Generation

Jetson Xavier and DRIVE Xavier Targeting

Key Takeaways

Platform Productivity: Workflow automation, ease of use Framework Interoperability: ONNX, Keras-TensorFlow, Caffe

Key Takeaways

Optimized CUDA and TensorRT code generation

Jetson Xavier and DRIVE Xavier targeting

Processor-in-loop(PIL) testing and system integration

Example Used in Today's Talk

Outline

Network Design and Training

CUDA and TensorRT Code Generation

Jetson Xavier and DRIVE Xavier Targeting

The state of the s

Unlabeled Training Data

Ground Truth Labeling

Labels for Training

Interactive Tools for Ground Truth Labeling

ROI Labels

- Bound boxes
- Pixel labels
- Poly-lines

Scene Labels

Automate Ground Truth Labeling

Automating Labeling of Lane Markers

Automate Labeling of Bounding Boxes for Vehicles

Export Labeled Data for Training

Outline

Ground Truth Labeling

Jetson Xavier and DRIVE Xavier Targeting

Example Used in Today's Talk

Lane Detection Algorithm

Modify Network for Lane Detection

Coefficients of parabola

Transform to Image Coordinates

regressionOutputs =

1225×6 <u>table</u>

leftLane_a	leftLane_b	leftLane_c	rightLane_a	rightLane_b	rightLane_c
3.5482e-05	0.0060327	1.7599	-0.00015691	0.030256	-2.0559
-3.9519e-05	0.014116	1.662	-0.00097636	0.02979	-2.0749
-6.778e-07	-0.00063158	1.776	-7.0963e-05	0.0024721	-1.9428
-0.00023646	0.0088324	1.8188	-0.00050391	-0.0015166	-1.973
-0.00055867	0.012996	1.8074	-8.6643e-05	0.00098652	-1.935
^ ^^^^	^ ^^4747	4 7045	0 00000000	^ ^44 6 6 6	4 0000

Lane Detection: Load Pretrained Network

Lane Detection Network

- Regression CNN for lane parameters
- MATLAB code to transform to image co-ordinates

```
>> net = alexnet
```

>> deepNetworkDesigner

View Network in Deep Network Designer App

Remove Layers from AlexNet

Add Regression Output for Lane Parameters

Transparently Scale Compute for Training

Specify Training on:

'multi-gpu'

Works on Windows (no additional setup)

```
Quickly change training hardware chs', 100, ...

'MiniBatchSize', 250, ...

'InitialLearnRate', 0.00005, ...

ExecutionEnvironment', 'auto';
```


NVIDIA NGC & DGX Supports MATLAB for Deep Learning

- GPU-accelerated MATLAB Docker container for deep learning
 - Leverage multiple GPUs on NVIDIA DGX Systems and in the Cloud
 - Cloud providers include: AWS, Azure, Google, Oracle, and Alibaba

- NVIDIA DGX System / Station
 - Interconnects 4/8/16 Volta GPUs in one box
- Containers available for R2018a and R2018b
 - New Docker container with every major release (a/b)
- Download MATLAB container from NGC Registry
 - https://ngc.nvidia.com/registry/partners-matlab

Evaluate Lane Boundary Detections vs. Ground Truth

Example Used in Today's Talk

YOLO v2 Object Detection

Model Exchange with MATLAB

Import Pretrained Network in ONNX Format

Import Pretrained Network in ONNX Format

bn2b branch2a

resnet50 177 **i** 0 Analysis date: 09-Jan-2019 09:39:08 warnings ANALYSIS RESULT (LEARNABLES NAME TYPE ACTIVATIONS input_1 Image Input 224x224x3 224x224x3 images with 'zerocenter' normalization conv1 Convolution 112×112×64 Weights 7x7x3x64 • bn conv1 64 7x7x3 convolutions with stride [2 2] and padding [3 3 3 3] Bias 1x1x64 **Batch Normalization** Offset 1x1x64 bn conv1 112×112×64 activation_1_relu Batch normalization with 64 channels Scale 1x1x64 _max_pooling2d_1 4 activation_1_relu ReLU 112×112×64 res2a_branch2a res2a_branch1 max pooling2d 1 Max Pooling 55×55×64 3x3 max pooling with stride [2 2] and padding [0 0 0 0] bn2a branch2a bn2a branch1 Convolution 55×55×64 Weights 1x1x64x64 64 1x1x64 convolutions with stride [1 1] and padding [0 0 0 0] 1x1x64 activation 2 relu bn2a branch2a **Batch Normalization** 55×55×64 Offset 1x1x64 Batch normalization with 64 channels Scale 1x1x64 res2a_branch2b ReLU activation 2 relu 55×55×64 bn2a branch2b ReLU res2a branch2b Convolution 55×55×64 Weights 3x3x64x64 activation 3 relu 64 3x3x64 convolutions with stride [1 1] and padding 'same' Bias 1×1×64 res2a_branch2c 10 bn2a branch2b Batch Normalization 55×55×64 Offset 1x1x64 Batch normalization with 64 channels Scale 1x1x64 bn2a_branch2c 11 activation 3 relu ReLU 55×55×64 add 1 12 res2a branch2c Convolution 55×55×256 Weights 1x1x64x256 256 1x1x64 convolutions with stride [1 1] and padding [0 0 0 0] Bias 1×1×256 activation 4 relu 13 res2a branch1 Convolution 55×55×256 Weights 1x1x64x256 res2b_branch2a 256 1x1x64 convolutions with stride [1 1] and padding [0 0 0 0] 1×1×256 Bias 14 bn2a_branch2c Batch Normalization 55×55×256 Offset 1×1×256

Modify Network

```
lgraph = layerGraph(net);
                                                                     Removing the 2
lgraph = removeLayers(lgraph, 'Input_input_1');
lgraph = removeLayers(lgraph, 'fc1000_Flatten1');
                                                                    ResNet-50 layers
lgraph = connectLayers(lgraph, 'avg_pool', 'fc1000');
avgImgBias = -1*(lgraph.Layers(1).Bias);
%Create new input layer and incorporate average image bias
larray = imageInputLayer([224 224 3],...
    'Name','input',...
    'AverageImage',avgImgBias);
lgraph = replaceLayer(lgraph, 'input_1_Sub', larray);
netModified = assembleNetwork(lgraph);
save('resnet50_model.mat','netModified');
```

imageInputLayer replaces the input and subtraction layer

Save MAT file for code gen

YOLOv2 Detection Network

yolov2Layers: Create network architecture

>> detector = trainYOLOv2ObjectDetector(trainingData,lgraph,options)

Evaluate Performance of Trained Network

- Set of functions to evaluate trained network performance
 - evaluateDetectionMissRate
 - evaluateDetectionPrecision
 - bboxPrecisionRecall
 - bboxOverlapRatio

```
>> [ap,recall,precision] =
evaluateDetectionPrecision(results,vehicles(:,2));
```


Example Applications using MATLAB for AI Development

Lane Keeping Assist using Reinforcement Learning

Outline

Ground Truth Labeling

Network Design and Training

Jetson TX1, TX2, Xavier

Jetson Xavier and DRIVE Xavier Targeting

Key Takeaways

Platform Productivity: Workflow automation, ease of use

Framework Interoperability: ONNX, Keras-TensorFlow, Caffe

GPU Coder runs a host of compiler transforms to generate CUDA

NVIDIA.

CUDA C/C++

Example Used in Today's Talk

With GPU Coder, MATLAB is fast

Faster than TensorFlow, MXNet, and PyTorch

Intel® Xeon® CPU 3.6 GHz - NVIDIA libraries: CUDA10 - cuDNN 7 - Frameworks: TensorFlow 1.13.0, MXNet 1.4.0 PyTorch 1.0.0

TensorRT speeds up inference for TensorFlow and GPU Coder

GPU Coder with TensorRT faster across various Batch Sizes

Intel® Xeon® CPU 3.6 GHz - NVIDIA libraries: CUDA10 - cuDNN 7 - Tensor RT 5.0.2.6. Frameworks: TensorFlow 1.13.0, MXNet 1.4.0 PyTorch 1.0.040

Even higher Speeds with Integer Arithmetic (int8)

Intel® Xeon® CPU 3.6 GHz - NVIDIA libraries: CUDA10 - cuDNN 7 – Tensor RT 5.0.2.6. Frameworks: TensorFlow 1.13.0, MXNet 1.4.0 PyTorch 1.0.041

Outline

Ground Truth Labeling

Network Design and Training

CUDA and TensorRT Code Generation

Key Takeaways Optimized CUDA and TensorRT code generation

Deploy to Jetson and Drive

Hardware in the loop workflow with Jetson/DRIVE device

Command Window

New to MATLAB? See resources for Getting Started.

fx >> h

Processor in the loop verification with Jetson/Drive devices

```
% Set up connection to Jetson device
hwobj = jetson('gpucoder-xavier-1', 'ubuntu', 'ubuntu');
% Set up code generation to Processor-in-loop mode
cfg = coder.gpuConfig('lib');
cfg.VerificationMode = 'PIL';
cfg.Hardware = coder.hardware('NVIDIA Jetson');
% Generate code for application using CUDA and TensorRT
cfg.DeepLearningConfig = coder.DeepLearningConfig('tensorrt');
codegen -config cfg detect_lane_yolo_full -args {ones(480,640,3,'uint8')}
                                                       Generates a wrapper
```

detect_lane_yolo_full_pil

Outline

Ground Truth Labeling

Network Design and **Training**

CUDA and TensorRT Code Generation

Jetson Xavier and DRIVE **Xavier Targeting**

Key Takeaways

Platform Productivity: Workflow automation, ease of use Framework Interoperability: ONNX, Keras-TensorFlow, Caffe

Key Takeaways

Optimized CUDA and TensorRT code generation **Jetson Xavier and DRIVE Xavier** targeting **Processor-in-loop(PIL)** testing and system integration

Thank You