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Goal: We hope you walk away knowing the answer to these questions

« What is reinforcement learning and why should | care about it?
= How do | set it up and solve it? [from an engineer’s perspective]

= What are some benefits and drawbacks?
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Let’s try to solve this problem the traditional way
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What is the alternative approach?
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What is reinforcement learning?
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Supervised learning typically involves
feature extraction

Deep learning typically simplifies
feature extraction
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement learning:

Learning through trial & error
[interaction]

Complex problems typically
need deep learning

[Deep Reinforcement
Learning]

It's about learning a

behavior or accomplishing a
task
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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A Practical Example of Reinforcement Learning
Training a Self-Driving Car

= Vehicle’s computer learns how to drive...

/ AGENT \ (agent)

STATE _ ACTION = using sensor readings from LIDAR, cameras,...
d Poicy pummy (state)
TPolicy update = that represent road conditions, vehicle position,...
Reinforcement (environment)

B Learning = by generating steering, braking, throttle commands,...
\ Algorithm / (action)

i | | |
= based on an internal state-to-action mapping...

REWARD (pOIICy)
= that tries to get you from A to B without an accident while
possibly optimizing driver comfort & fuel efficiency...

ENVIRONMENT (reward).

= The policy is updated through repeated trial-and-error by a
reinforcement learning algorithm
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A Practical Example of Reinforcement Learning
A Trained Self-Driving Car Only Needs A Policy To Operate

= Vehicle’s computer uses the final state-to-action mapping...

(policy)
- = to generate steering, braking, throttle commands,...
POLICY (action)
= based on sensor readings from LIDAR, cameras,...
(state)

= that represent road conditions, vehicle position,...

(environment)
STATE ACTION

By definition, this trained policy
ENVIRONMENT puts into practice what is in the
reward function
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A deep neural network trained using reinforcement learning is a
black-box model that determines the best possible action

/ Deep Neural Network Policy \

Current State > (captures environment

(Image, Radar, dynamics...somehow)
Sensor, etc.)

> Next
Action

Previous
Action >

(optional) \ /

By representing policies using deep neural networks, we can solve problems
for complex, non-linear systems (continuous or discrete) by directly using
data that traditional approaches cannot use easily
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How do | set it up and solve it?
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Steps in the Reinforcement Learning Workflow

Environment Reward Policy Training
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Deployment
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Environment
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Steps in the Reinforcement Learning Workflow

Environment Reward Deployment
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Reward Function
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Long-Term Reward (Q)
- Q(Sy,a,) = +105 (optimal)

= Q(Sy,ay) = +60

+ Q(Spag) = +30

The logic you used right now to
decide you should take action a,
IS a policy
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Policy & Agent
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Create Environment Interface
Create the observation specification.

numdhs = 29;
obsInfo = rlNumericsSpec{[numObs 1]);
obsInfo.Mame = "observations';

Create the action specificaticn.

numdct = &;

actInfo = rlilumericSpec([numAct 1], 'LowerLimit',-1, 'UpperLimit’, 1);

actInfo.Name = "foot torgue’;

Create the environment interface for the walking roebot model

blk = [mdl,"'/RL Agent'];
env = rlSimulinkEnv(mdl,blk,cbsInfo,actInfo);

env.ResetFcn = @(in) walkerResetFcn(in,upper_leg length/1@8,lower_leg length/108,h/108};

o

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value function representation. A DDPG agent decides which

action to take given observations using an actor representation. The actor and critic networks for this example are inspired by [2].



Reinforcement Learning vs Controls
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Control system Reinforcement learning system
( AGENT \
":'/\ ERROR CONTROLLER LA R STATE ACTION
REFERENCE\J MANIPULATED policyiupdaie
-1 VARIABLE Reinforcement
Learr_1ing
\ Algorithm /
MEASUREMENT

Adaptation mechanism

Error/Cost function

Manipulated variable

ENVIRONMENT

RL Algorithm
Reward

Action
Measurement

Plant

Controller

Observation

Environment

Policy

Reinforcement learning has parallels to control system design

AN
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When would you use Reinforcement Learning?
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Controller Computational Cost Computational Cost
Capability in Training/Tuning in Deployment

Low Low Low

Model Pred Control High Low High
Reinforcement Learning Very High High Medium

Reinforcement learning might be a good fit if

= An environment model is available (trial & error on hardware can be expensive), and
= Training/tuning time is not critical for the application, and

= Uncertain environments or nonlinear environments
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Reinforcement Learning Toolbox & Mattorks

New in R2019a

Examples More~

Documentation Al

= CONTENTS

4\ MathWorks®  sroues Soutons  Acsdemi Sugpon Community  Evenis

Built-in and custom algorithms for reinforcement
learning

Reinforcement Learning Toolbox

EnVIronment mOdeIing in MATLAB and SImUIInk Design and train policies using reinforcement learning

$ Download a free Irial

Deep Learning Toolbox support for designing policies

Reinforcement Leaming Toolbox™ provides functions and blocks for training policies
using reinforcement leaming algorithms including DQN, A2C, and DDPG. You can
use these policies to implement controllers and decision-making algorithms for
complex systems such as robots and autonomous systems. You can implement the
policies using deep neural networks, polynomials, or look-up tables.

The toolbox lets you train policies by enabling them to interact with environments

Training acceleration through GPUs and cloud

re S O u rC e S experiment with hyperparameter settings. and monitor training progress. To improve
training performance, you can run simulations in parallel on the cloud, computer
clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Paralle!

Server™).

Through the ONNX™ model format, existing policies can be imported from deep
learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning
Toolbox™). You can generate optimized C, C++, and CUDA code to deploy frained

Deployment to embedded devices and production
systems

controllers for robotics and automated driving applications

WAy and vanuauwn

Train and simulate reinforcement learning agents

Policy Deployment
Code generation and deployment of trained policies

Reference examples for getting started

4\ MathWorks

Search R2019a Documentation -

Reinforcement Leaming Toolbox  newenasser Seatch Mathorks

ontact sales
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Automotive Applications

= Controller Design

= Lane Keep Assist

= Adaptive Cruise Control
- Path Following Control

= Trajectory Planning

Hip joint ——%

Knee joint ————»

Ankle joint
Train DDPG Agent to Train Biped Robot to Walk Train DDPG Agent for
Control Flying Robot Using DDPG Agent Adaptive Cruise Control
Train a reinforcement learning agent Train a reinforcement learning agent Train a reinforcement learning agent
to control a flying robot model. to control a biped walking robot for an adaptive cruise contro
modeled in Simscape Multibody. application.

Train DQN Agent for Lane
Keeping Assist

Train a reinforcement learning agent
for a lane keeping assist application.

Train DDPG Agent for Path
Following Control

Train a reinforcement learning agent
for a lane following application.

4\ MathWorks
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Takeaways
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Simulation and virtual models are a key aspect of reinforcement
learning

= Reinforcement learning needs a |lot of data
(sample inefficient)

N Training on hardware can be prohibitive|y E J——
expensive and dangerous

= Virtual models allow you to simulate conditions
hard to emulate in the real world

— This can help develop a more robust
solution

= Many of you have already developed MATLAB
and Simulink models that can be reused

&\ MathWorks
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Resources . i

Knee joint ———»

Ankle joint

P Py 2
Train DDPG Agent to Train Biped Robot to Walk Train DDPG Agent for
Control Flying Robot Using DDPG Agent Aaia ~ -

Train a reinforcement learning agent Train a reinforcement learn

= Examples for automotive and
autonomous system applications S P

rym— "
4\ MathWorks: = \gent for Lane Train DDPG Agent for Path
Sist Following Control

mples  More~

¥ment learning agent Train a reinforcement learning agent

- Documentation written for
. . Reinforcement Learning Toolbo 2019
d d t Design and train po forcement leaming fig assist application. fior a lane following application.
engineers an omain experts

using reinforcement learning algorithms including DQN, A2C, and DDPG. You can & PDE Documentation
use these policies to implement controllers and decision-making algorithms for

complex systems such as robots and autonomous systems. You can implement the

policies using deep neural networks, polynomials, or lock-up tables.

The toolbox lets you train policies by enabling them to interact with environments r
represented by MATLAB® or Simulink® models. You can evaluate algorithms,

experiment with hyperparameter settings, and monitor training progress. To improve

training performance, you can run simulations in parallel on the cloud, computer

clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Parallel

Server™)

. .
Through the ONNX™ model format, existing policies can be imported from deep

| | learning framewarks such as TensorFlow™ Keras and PyTorch (with Deep Learning
Toolbox™). You can generate optimized C, C++, and CUDA code to deploy trained

policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement learing to design

reinforcement learning concepts for

Getting Started
Learn the basics of Reinforcement Learning Toolbox

ngin }
e I e e rS MATLAB Environments E nvironmen
Model reinforcement leaming environment dynamics using MATLAB

Simulink Environments
Model reinforcement leamning environment dynamics using Simulink models

Policies and Value Functions
Define policy and value function representations, such as deep neural networks and Q tabl

Agents
Create and configure reinfercement leaming agents using common algorithms, such as SA

Training and Validation
Train and simulate reinforcement learing agents

Policy Deployment
Code generation and deployment of trained policies

Joint angles
Camera vision



https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/examples.html
https://www.mathworks.com/help/releases/R2019a/reinforcement-learning/index.html
https://de.mathworks.com/videos/series/reinforcement-learning.html

Thank You!
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