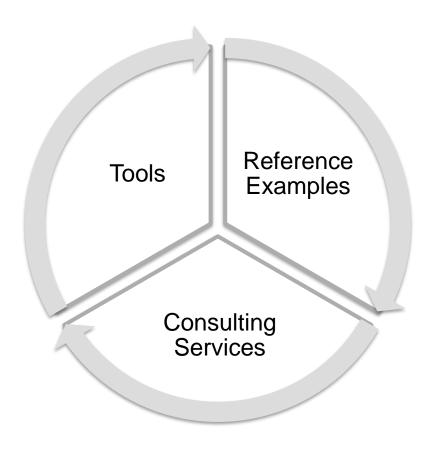
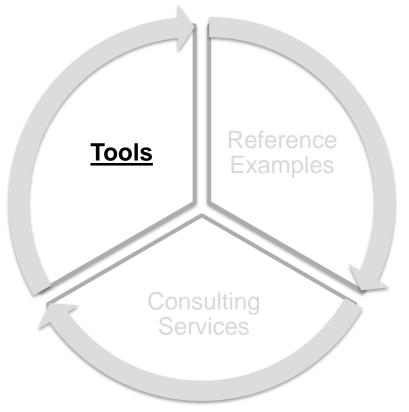


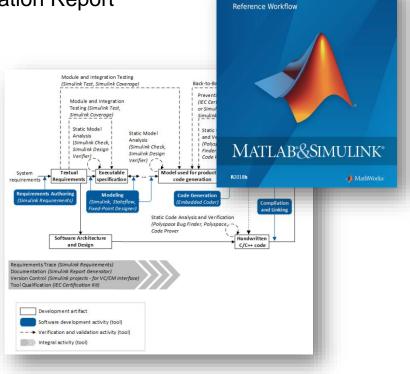
Process Pitfalls in ISO 26262 Compliance

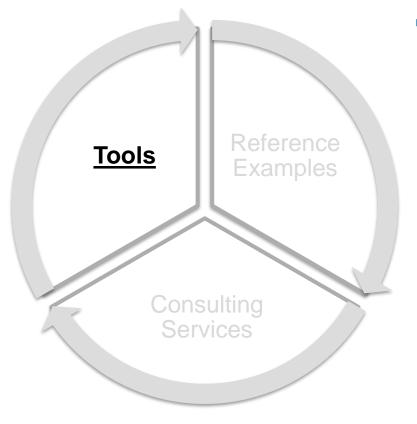
MathWorks Consulting Jason Moore



Functional safety industry trend







- IEC Certification Kit
 - Model-Based Design Reference Workflow
 - Tool Qualification Package
 - Software Tool Criteria Evaluation Report
 - Software Tool Qualification
 - Tool Validation Suite
 - ...etc.

IEC Certification Kit

- Targeted Features
 - Model Metrics Dashboard

ble 1 — Topics to be covered by modelling and coding guide

Design Compliance

	Table 1 — Topics to be covered by modelling and coding guidelines									
	Tonico	ASIL								
	Topics		В	С	D					
1a	Enforcement of low complexity ^a	++	++	++	++					
1b	Use of language subsets ^b	++	++	++	++					
1c	Enforcement of strong typing ^c	++	++	++	++					
1d	Use of defensive implementation techniques ^d	+	+	++	++					
1e	Use of well-trusted design principles ^e	+	+	++	++					
1f	Use of unambiguous graphical representation	+	++	++	++					
1g	Use of style guides	+	++	++	++					
1h	Use of naming conventions	++	++	++	++					
1i	Concurrency aspectsf	+	+	+	+					

R2017b

Model Testing Dashboard

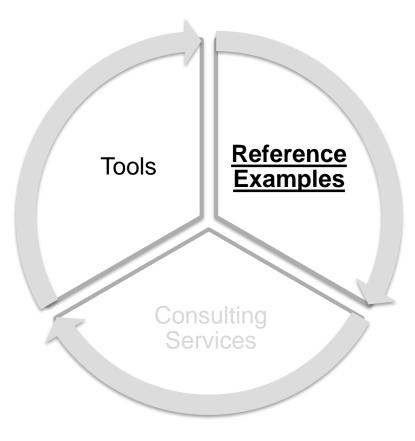
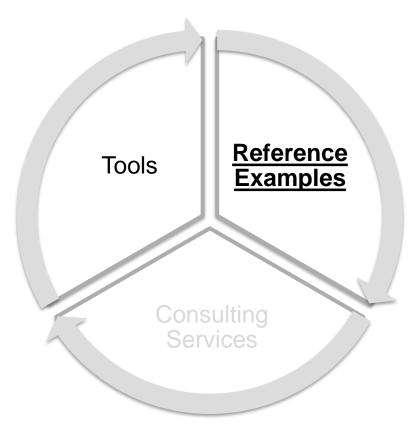
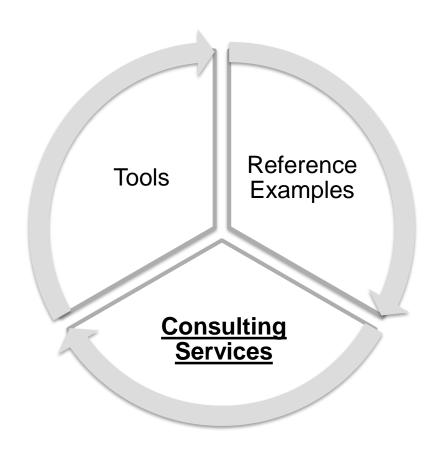

Verification Compliance

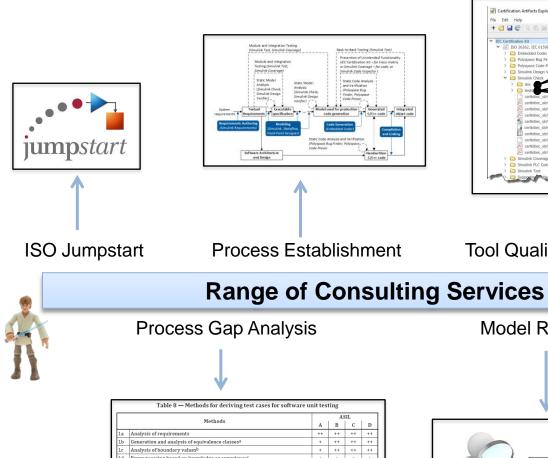
Table 8 — Methods for deriving test cases for software unit testing

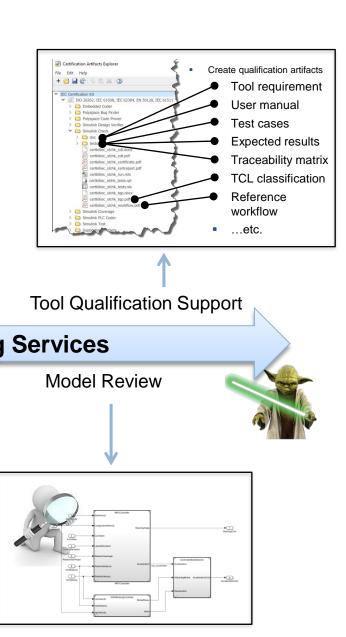
	Methods		ASIL				
	Methous	A	В	C	D		
1a	Analysis of requirements	++	++	++	++		
1b	Generation and analysis of equivalence classes ^a	+	++	++	++		
1c	Analysis of boundary values ^b	+	++	++	++		
1d	Error guessing based on knowledge or experience	+	+	+	+		
	Table 9 — Structural coverage metrics at the software unit level						


R2020b

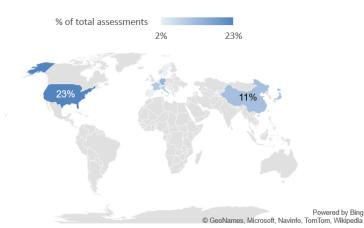
- Best Practice Paper
 - (2018) Model Quality Objectives
 - Recommended model metric and threshold
 - (2019) 11 Best Practices for Developing ISO 26262
 Applications with Simulink
 - How to achieve Freedom from Interference?
 - (2020) An ISO 26262 Workflow for Automated Driving Applications Using MATLAB: Guidelines and Best Practices
 - Use of MATLAB as part of ISO 26262 workflow

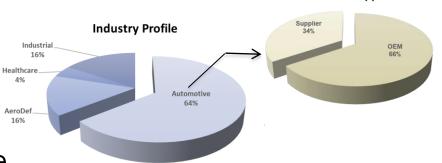

Reference Application


Architecture Design with System Composer 4)-5


ISO 26262-6 Workflow Example

Component/Unit Design with Simulink

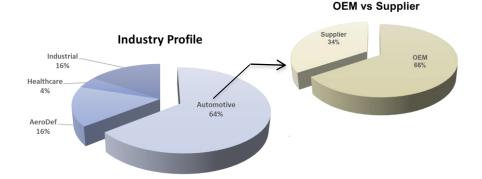



Observations based on our work with industry Common pitfalls

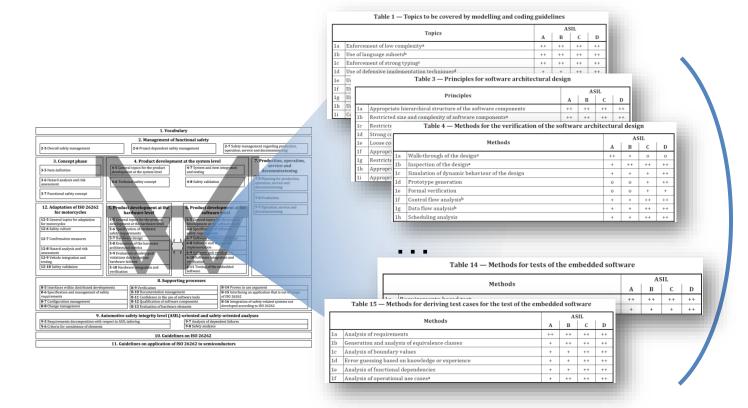
- Unaware of ISO requirements
- Legacy components developed outside of ISO
- No clear mapping of ISO requirement to workflow
- Lack of tool implementation methods against ISO requirement
- No architecture consideration
- HIL-centric verification workflow
- No justification on method selections
- No clear definition of required work product
- Lack of consistency in work product
- No upfront consideration to tool qualification
- Lack of coordination between functional safety and software development
- Underestimate the effort (cost and timing) required for ISO project
- ...etc.

Process Assessment Locations

OEM vs Supplier


Observations based on our work with industry Common Themes

Process not clearly defined or documented


Lack top-down architectural design approach

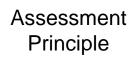
Poor tool qualification awareness

Process Assessment Locations % of total assessments 2% 23% 11% Powered by Bing GeoNames, Microsoft, Navinfo, TomTom, Wikipedia

ISO 26262-6

- 15 Tables
- 90 Topics/Methods/Principles

- Which topics/method/principles were chosen?
- What justification were used?
- What evidence were captured?
- What are the implementation steps?
- ...etc.?



Process not clearly defined or documented Define process: from ISO Requirement down to Detail Work Instructions

Assessment Principle Define Execute Archive

Define process: from ISO Requirement down to Detail Work Instructions

Execute

Archive

ISO recommendations

Decision to follow recommendation

	∫ ∫le 7 – Methods for software unit	verification	
Met	nods	ASIL D	Applicable 4
1a	Walk-through	0	No*
1b	Pair-programming	+	No*
1c	Inspection	++	Yes
1d	Semi-formal verification	++	Yes
1e	Formal verification	+	Yes
1f	Control flow analysis	++	Yes
1g	Data flow analysis	++	Yes
1h	Static code analysis	++	Yes
1i	Static analysis based on abstract interpretation	+	No
1j	Requirement-based test	++	Yes
1k	Interface test	++	Yes
11	Fault injection test	++	Yes
1m	Resource usage evaluation	++	Yes
1n	Back-to-back comparison between model and code, if applicable	++	Yes

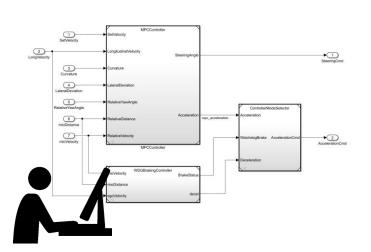
Т	Table 8 – Methods for deriving test cases for software unit testing							
Meth	nods	ASIL D	Applicable					
1a	Analysis of requirements	++	Yes					
1b	Generation and analysis of equivalence classes	++	Yes					
1c	Analysis of boundary values	++	Yes					
1d	Error guessing based on knowledge or experience	++	No*					

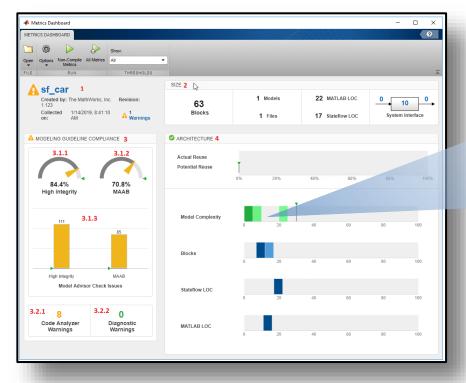
	Table 9 – Structural coverage metrics at the software unit level								
Methods ASIL D Applicable									
1a	Statement coverage	++	Yes						
1b	Branch coverage	++	Yes						
1c	MC/DC (Modified Condition / Decision Coverage)	++	Yes						

Mapping to Engineering Task

Task Name	SO Requirement	Work Product
Model Review /	ISO 26262-6:2018 Table 3-1b	Model Review Checklist
	ISO 26262-6:2018 Table 3-1c	
	ISO 26262-6:2018 Clause 5	
	ISO 26262-6:2018 Table 7-1c	
	ISO 26262-8:2018 6.4.2.3	
	ISO 26262-8:2018 6.4.3.2	
Model Testing	ISO 26262-6:2018 Table 7-1d	Software Unit Test Verification Specification
	ISO 26262-6:2018 Table 7-1j	Model Unit Test Tool (Excel Input File)
	ISO 26262-6:2018 Table 7-1k	Model Coverage Report
	ISO 26262-6:2018 Table 9-1a	Model Coverage Filter
	ISO 26262-6:2018 Table 9-1b	Software Unit Test Verification Report
	ISO 26262-6:2018 Table 9-1c	
Software-in-the-Loop	ISO 26262-6:2018 Table 7-1n	Software Unit Test Verification Specification
(SIL) Testing	ISO 26262-6:2018 Table 9-1a	Model Unit Test Tool (Excel Input File)
	ISO 26262-6:2018 Table 9-1b	Code Coverage Report
	ISO 26262-6:2018 Table 9-1c	Software unit test verification report
Processor-in-the-Loop	ISO 26262-6:2018 Table 7-1	Software Unit Test Verification Specification
(PIL) Testing	ISO 26262-6:2018 Table 7-1m	Model Unit Test Tool (Excel Input File)
	ISO 26262-6:2018 Table 7-1n	Software Unit Test Verification Report
Code Analysis	ISO 26262-6:2018 Table 6	Polyspace Bug Finder Report
	ISO 26262-6:2018 Table 7-1f	Polyspace Code Prover Report
	ISO 26262-6:2018 Table 7-1g	Software Unit Test Verification Specification
	ISO 26262-6:2018 Table 7-1h	Software Unit Test Verification Report
Regression Testing	All the above	All the above
Software Unit	ISO 26262-6:2018 Clause 9	Software Unit Verification Checklist
Verification Checklist		
Review		

Derive Consistent

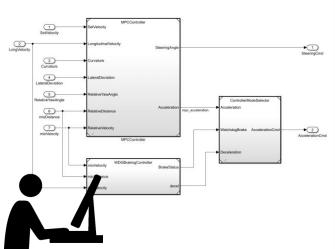

Work Instructions

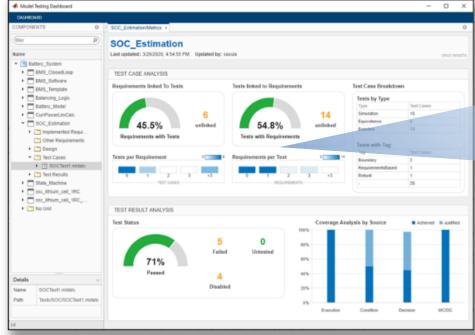


Define process: from ISO Requirement down to Detail Work Instructions

Assessment Principle

	Table 1 — Topics to be covered by modelling and coding guidelines									
	Topics	ASIL								
	Topics		В	C	D					
1a	Enforcement of low complexity ^a	++	++	++	++					
1b	Use of language subsets ^b	++	++	++	++					
1c	Enforcement of strong typing ^c	++	++	++	++					
1d	Use of defensive implementation techniques ^d	+	+	++	++					
1e	Use of well-trusted design principles ^e	+	+	++	++					
1f	Use of unambiguous graphical representation	+	++	++	++					
1g	Use of style guides	+	++	++	++					
1h	Use of naming conventions	++	++	++	++					
1i	Concurrency aspects ^f	+	+	+	+					


Model Metric Dashboard

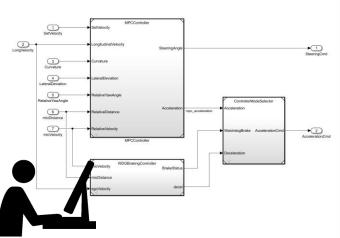


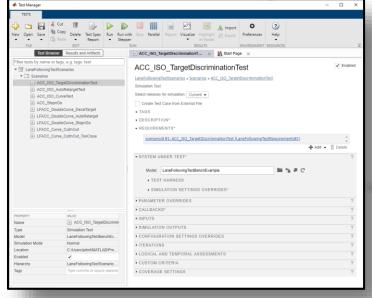
Define process: from ISO Requirement down to Detail Work Instructions

Assessment Principle

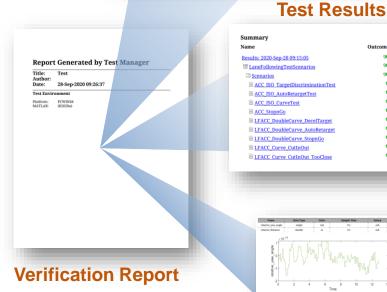
		Methods				ASIL			
	Methods					C	D		
1a	Ana	Analysis of requirements ++ Generation and analysis of equivalence classes ^a +					++	71	
1b	Gen	ierat	++	++	++				
1c Analusia of boundary in Table 9 — Structural coverage metrics at the software unit level									
		Г	Methods		ASIL				
			Methods	Α	В	C	D		
		1a	Statement coverage		++	++	+	+	
		1b	Branch coverage		+	++	++	++	
		1c	MC/DC (Modified Condition/Decision Coverage)		+	+	+	++	

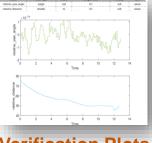
Model Testing Dashboard




Define process: from ISO Requirement down to Detail Work Instructions

Assessment Principle





Simulink Test (Test Manager)

Back to Report Summary

Duration (Seconds) 90 612.623

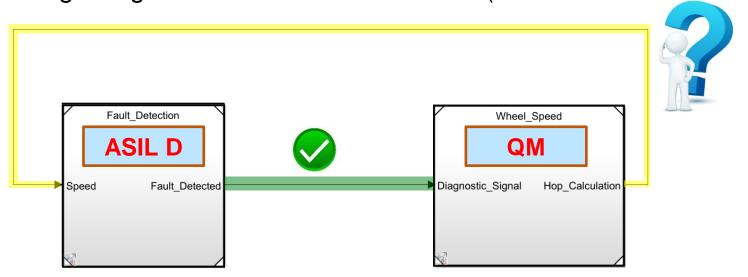
90 612.625

90 612.625

73,295

47.105

9 57,526



Lack top-down architectural design approach

"Bottom up" (legacy) vs "top down" (functional safety) approach

Concepts:

- Static and Dynamic architecture description (ISO 26262-6:2018 Clause 7.4.5)
- Criteria for coexistence of elements (ISO 26262-9: 2018 Clause 6)
- Safety-Oriented analysis (ISO 26262-9:2018 Clause 8)
- Analysis of dependent failures (ISO 26262-9:2018 Clause 7)
- Software partitioning using Freedom From Interference (ISO 26262-6:2018 Annex D)

Lack top-down architectural design approach Perform architectural review – Freedom From Interference

- ISO 26262-6 (Annex D)
 - Timing and execution
 - Memory
 - Exchange of information

Model architecture

- Use model reference for unit-level models
- Pick a strategy for grouping units into features
- Split ASIL and QM levels at the top level of the model
- Eliminate algorithm content at the integration level
- Use model metrics to monitor unit complexity

Signal routing and definition

- Group bus signals by ASIL, feature, and rate
- · Pass only necessary signals to units
- Optimize placement of signal and parameter objects
- Protect data exchanged between ASILs

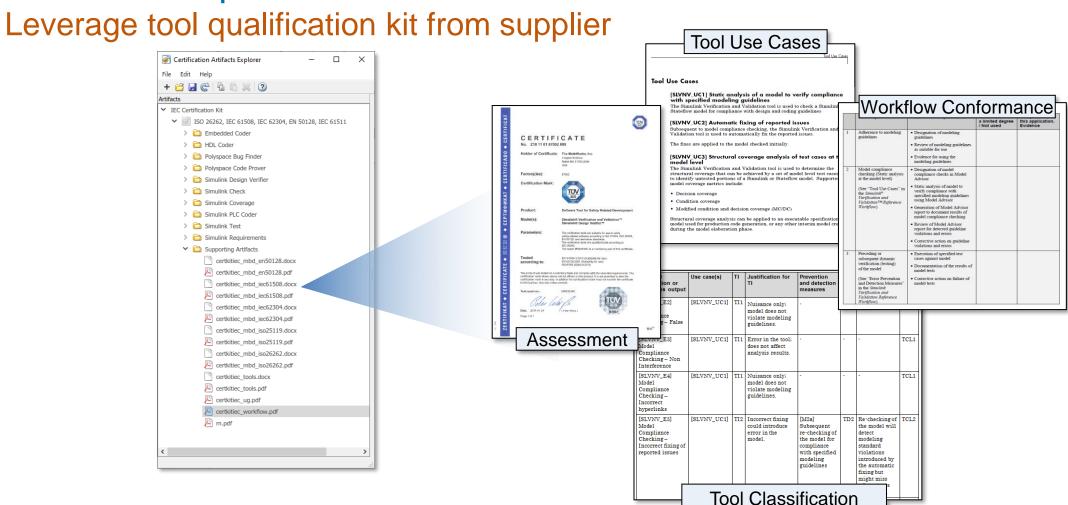
Code generation configuration

- Determine a code placement strategy
- Use different name tokens for shared utilities

Poor tool qualification awareness

How do you qualify a tool?

Method		TCL 2			TCL 3			
Method	ASIL A	ASIL B	ASIL C	ASIL D	ASIL A	ASIL B	ASIL C	ASIL D
1a Increased confidence from use	++	++	++	+	++	++	+	+
1b Evaluation of the tool development process	++	++	++	+	++	++	+	+
1c Validation of the software tool	+	+	+	++	+	+	++	++
1d Development in compliance with a safety standard	+	+	+	++	+	+	++	++


Source: ISO 26262:2018 Clause 11.4.6.1, Tables 4&5

+ ... Recommended

++ ... Highly recommended

Poor of tool qualification awareness

- Utilize vendor provided tool qualification content as much as possible
- Have a plan to qualify any custom tools or use cases not covered by the tool vendor

Summary

- Process not clearly defined or documented
 - Document process: from ISO Requirement down to Detail Work Instructions

- Lack top-down architectural design approach
 - Review architecture Implementation of Freedom From Interference
- Reference Tools Examples Consulting Services

- Poor tool qualification awareness
 - Leverage tool qualification content from tool vendor

Presenter contact info and poll questions

Please contact me at jasonm@mathworks.com with questions

- Poll question: How would you rate your organizations activity on ISO 26262
 - a. No interest
 - b. Some interest but no activity
 - c. Currently implementing an ISO 26262 compliant process
 - d. Struggling to implement an ISO 26262 compliant process
 - e. Already fully ISO 26262 compliant

 If you would like to an individual follow-up, please let us know in the WebEx poll area.