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Key Takeaways
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▪ What is reinforcement learning and why should I care about it?

▪ How do I set up and solve a reinforcement learning problem? 

▪ What are some common challenges?



Why Should You Care About Reinforcement Learning?
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State estimation
Joint trajectory generation 

(e.g. MPC)

Low-level control

(e.g. PID)

Motor torquesMeasurements

One Approach Could Be…
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Motor torquesMeasurements Black Box

Controller

Any Alternatives?
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Applications of Reinforcement Learning
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What is reinforcement learning?

Type of machine learning that trains an ‘agent’ through trial & error 

interactions with an environment



Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Reinforcement Learning vs Machine Learning vs Deep Learning
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Deep Learning

Complex reinforcement learning problems typically need deep neural networks

[Deep Reinforcement Learning]

What about deep learning?

Reinforcement Learning vs Machine Learning vs Deep Learning
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Fetch!

Let’s try 

this…

Yay!

Here is 

your treat!

AGENT

Reinforcement 

Learning 

Algorithm

Policy

ENVIRONMENT

ACTIONS

REWARD

OBSERVATIONS

Policy update

Analogies with pet training

How does reinforcement learning training work?
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Reinforcement Learning Concepts
Training a self-driving car

▪ Vehicle’s computer…                  

(agent)

▪ is reading sensor measurements from LIDAR, cameras,…         

(observations)

▪ that represent road conditions, vehicle position,… 

(environment)

▪ and generates steering, braking, throttle commands,… 

(action)

▪ based on an internal state-to-action mapping…       

(policy)

▪ that tries to optimize, e.g., lap time & fuel efficiency…

(reward).

▪ The policy is updated through repeated trial-and-error by a 

reinforcement learning algorithm

AGENT

Reinforcement 

Learning 

Algorithm

Policy

ENVIRONMENT

ACTIONS

REWARD

OBSERVATIONS

Policy update
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Reinforcement Learning Concepts
Training a self-driving car

▪ Vehicle’s computer uses the final state-to-action 

mapping…   (policy)

▪ to generate steering, braking, throttle commands,… 

(action)

▪ based on sensor readings from LIDAR, cameras,…         

(observations)

▪ that represent road conditions, vehicle position,… 

(environment).

POLICY

ENVIRONMENT

ACTIONSOBSERVATIONS

By definition, this trained policy is 

optimizing lap time & fuel efficiency

After training, only trained

policy is needed
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Control system Reinforcement learning system

PLANTCONTROLLER

REFERENCE

MEASUREMENT

MANIPULATED

VARIABLE

+

-

ERROR

Reinforcement learning has parallels to control system design

Controller Policy

Plant Environment

Measurement Observation

Manipulated variable

Error/Cost function

Adaptation mechanism

Action

Reward

RL Algorithm

AGENT

Reinforcement 

Learning 

Algorithm

Policy

ENVIRONMENT

ACTION

REWARD

OBSERVATIONS

Policy update

Reinforcement Learning vs Controls
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Policy Representation and Deep Learning

Observations Next action

Representation options

▪ Look-up table

▪ Polynomials

A

5

4

3

2

1

1 2 3 4 5

17

Look-up tables do not scale well



Policy Representation and Deep Learning

Observations

(camera frame, sensors, …)

Next action

Representation options

▪ Look-up table

▪ Polynomials

▪ (Deep) neural networks Deep neural network policy

Neural networks allow representation of complex policies
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How do I set up and solve 

a reinforcement learning problem?



Reinforcement Learning Workflow

Environment Reward Policy

representation

Training DeploymentAgent

▪ Large number of simulations needed

▪ Parallel & GPU computing can speed up training

▪ Training could still take hours or days

▪ Select training algorithm

▪ Tune hyperparameters

▪ Deep network? Table? Polynomial?

▪ Numerical value that evaluates goodness of policy

▪ Reward shaping can be challenging 

▪ Simulation models or real hardware

▪ Virtual models are safer and cheaper

▪ Trained policy is a standalone 

function
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Reinforcement Learning Workflow

Environment Reward Policy

representation

Training DeploymentAgent
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Reinforcement Learning Toolbox

Introduced in

▪ Built-in and custom reinforcement learning algorithms

▪ Environment modeling in MATLAB and Simulink

– Existing scripts and models can be reused

▪ Deep Learning Toolbox support for representing policies

▪ Training acceleration with Parallel Computing Toolbox and 

MATLAB Parallel Server

▪ Deployment of trained policies with GPU Coder and 

MATLAB Coder

▪ Reference examples for getting started
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Example: Walking Robot

Environment Reward Policy Training DeploymentAgent

Motor torquesMeasurements

Control objective: Walk 

on a straight line
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Creating the Environment
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Reward Shaping
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Creating the Agent
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Training the Agent
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Applications of Reinforcement Learning

30



Autonomous Driving Example

Environment

Traditional 

Controller

RL Agent

Image (Observation)

Car Position (Observation)

Objective: Augment traditional controller with 

reinforcement learning to improve lap time

Start/Goal

+

Steer, throttle, 

brake
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Reward

RL Agent

Vehicle Model

Traditional 

Controller
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Results

Traditional controller + 

reinforcement learning
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Reference Applications in Documentation

▪ Controller Design

▪ Robotic Locomotion

▪ Lane Keep Assist

▪ Adaptive Cruise Control

▪ Imitation Learning
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Pros & Cons of Reinforcement Learning

Pros

▪ No data required before training

▪ New possibilities with AI for 

hard-to-solve problems

▪ Complex end-to-end solutions can 

be developed

▪ Uncertain, nonlinear environments 

can be used

▪ Trained policies are hard to verify 

(no performance guarantees)

▪ Many trials/data points required 

(sample inefficient)

– Training with real hardware can be 

expensive and dangerous

▪ Large number of design parameters

– Reward signal

– Network architectures

– Training Hyperparameters

Cons

Simulations are key in Reinforcement Learning
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▪ Reuse existing code and models for 

environments

▪ Use simulations for policy 

verification

– Simulate extreme scenarios

▪ Run simulation trials in parallel to 

accelerate training

▪ Consult Reinforcement Learning 

Toolbox examples

– Iterative tuning with simulations

Challenges

▪ Trained policies are hard to verify 

(no performance guarantees)

▪ Many trials/data points required 

(sample inefficient)

– Training with real hardware can be 

expensive and dangerous

▪ Large number of design parameters

– Reward signal

– Network architectures

– Training Hyperparameters

How Can MATLAB and Simulink Help?
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Key Takeaways
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▪ What is reinforcement learning and why should I care about it?

▪ How do I set up and solve a reinforcement learning problem? 

▪ What are some common challenges?



Learn More

▪ Reference examples for controls, 

robotics, and autonomous system 

applications

▪ Documentation written for 

engineers and domain experts

▪ Tech Talk video series on 

Reinforcement Learning concepts

▪ Reinforcement Learning ebooks 

available at mathworks.com

39


