
0

Developing Service-Oriented Architecture and

Implementing Using Adaptive AUTOSAR and DDS

Rajat Arora, MathWorks Nukul Sehgal, MathWorks

1

Agenda

• Software-defined vehicles and new architectures (SOA)

• SOA Concepts

• MathWorks Solutions for SOA

• Adaptive AUTOSAR

• DDS/ROS

• Conclusions and key takeaways

2

Agenda

• Software-defined vehicles and new architectures (SOA)

• SOA Concepts

• MathWorks Solutions for SOA

• Adaptive AUTOSAR

• DDS/ROS

• Conclusions and key takeaways

3

Software-defined vehicles

Brand-distinctive features and main value for the customer will come from Software

4

Software-defined vehicles

Customer expectations
• Clean and Safe mobility

• Digital Life continuity

Technology & Innovation
• Electrification

• Autonomy

• Connectivity

Business opportunity
• App stores, SW features on demand

• SW services subscription plans

demand

investmonetize

5

Centralization of computing and SOA

High-performance CPU/GPU

New E/E zonal architectures

Consolidation and

centralization of computing

SW updates
• Frequent

• Selective

• Over-the-air

Application Services

High Performance Hardware/

Virtual Machine

Middleware

Platform Services

Higher HW abstraction:

Service-oriented architectures

100110
001010
010010100110

001010
010010

100110
001010
010010

6

Agenda

• Software-defined vehicles and new architectures (SOA)

• SOA Concepts

• MathWorks Solutions for SOA

• Adaptive AUTOSAR

• DDS/ROS

• Conclusions and key takeaways

7

SOA – What’s it all about?

▪ With SOA, applications are standalone processes that

provide and/or require services distributed across the

vehicle computing platform and the cloud

▪ SOA provides flexibility to add, remove, or update

applications without impacting the entire, typically large,

software system

▪ SOA is used by multiple industrial standards:

– AUTOSAR Adaptive Platform

– DDS (Data Distribution Services)

– ROS (Robot Operating System)

88

SOC (Service Oriented Communication)

Node1 Node2

Node3 Node4

signal-oriented communication

- send data independent of needs

- high bus load

- not efficient

Node1 Node2

Node3 Node4

service-oriented communication

- send data dependent of needs

- low bus load

- more efficient

responserequestresponserequest

1515

Key Challenges

▪ Service-oriented architectures require a change of mindset

– Shift from time-driven to event-driven execution

▪ Centralize, re-architect existing applications and partition in processes and

services

– e.g. Centralize energy management and path planning

▪ Reuse of existing expertise, workflows and software assets (don’t start

from scratch)

– Migrate software components from AUTOSAR Classic to AUTOSAR Adaptive

MathWorks is collaborating with OEMs and Suppliers to address these challenges

1616

Middleware

Simulink: Deploy software to different targets and standards

Simulink

1717

Middleware

Simulink: Deploy software to different targets and standards

Simulink

AUTOSAR Classic

RTE

Basic Software

Application Software

. . . .

GPUFPGA

µC

AUTOSAR Adaptive / ROS / DDS

Software

Legacy ECU

Hardware

1818

Application Services

Middleware

Basic Services

Simulink Messages for Service-oriented communication

Application Services

Middleware

Basic Services

1919

Application Services

Middleware

Basic Services

Simulink Messages for Service-oriented communication

You can model service-oriented communication

using messages (Send/Receive).

Application Services

Middleware

Basic Services

2020

Application Services

Middleware

Basic Services

Simulink Messages for Service-oriented communication

You can model service-oriented communication

using messages (Send/Receive).

Application Services

Middleware

Basic Services

2121

Application Services

Middleware

Basic Services

Simulink Messages for Service-oriented communication

You can model service-oriented communication

using messages (Send/Receive).

Application Services

Middleware

Basic Services

2222

Message Triggered/Polling Subsystem for SOA

• New blocks to process messages by executing subsystem when
message is available

• Model and generate code for components that are executed on

message arrival

2323

Function Ports for SOA

Model client and server components to facilitate data sharing using a functional interface between

component models

2424

Author SOA applications in software architecture models

Model client-server connections between software components

in software architectures in System Composer

2525

MathWorks investments in SW architecture design and

simulation

▪ Intuitive, collaborative, graphical

environment to design software

architectures

– Manage complexity

– Maximize sharing and reuse

▪ High-level language to model and

simulate service-oriented applications

– Messages and queues

– Client / server relationship

– Sequence diagrams

2626

Deploying SOA using C++

>> Generate C++ Messages to Communicate Data Between Simulink Components

Generate SOA-based C and C++ application code

from software services modeled in Simulink

for deployment.

https://in.mathworks.com/help/rtw/ug/generate-cpp-code-to-support-message-based-communication-between-simulink-components.html

2727

Agenda

• Software-defined vehicles and new architectures (SOA)

• SOA Concepts

• MathWorks Solutions for SOA

• Adaptive AUTOSAR

• DDS/ROS

• Conclusions and key takeaways

2828

AUTOSAR Adaptive

AUTOSAR Adaptive Platform implements the AUTOSAR Runtime for

Adaptive Applications (ARA) for automotive industry.

Application Services

Middleware

Basic Services

2929

AUTOSAR Adaptive workflows

A
U

T
O

S
A

R
S

W
-C

SW-C
Description

AUTOSAR

Adaptive

Architecture

A
U

T
O

S
A

R
S

W
-C

SW-C
Description

Export ARXML

Import ARXML

Import ARXML

Simulink,

AUTOSAR Blockset Application SW

C++ Code

Embedded

Coder

Export ARXML

3030

AUTOSAR Adaptive in action

Start from an AUTOSAR Adaptive ARXMLLegacy Simulink model

OR

Bottom-Up Top-Down

3131

AUTOSAR Adaptive in action: bottom-up

Legacy Simulink model

Add blocks to make the necessary event and signal connections

Add Message ports and Message-Signal conversion blocks

3232

"Radar" : {

// events

"event" : {

“leftLaneDistance"

“leftTurnIndicator“

“leftCarInBlindSpot”

“rightLandDistance”

“rightTurnIndicator”

“rightCarInBlindSpot”

},

// methods

"method" : {

"Calibrate"

"Adjust"

},

// fields

"field" : {

“updateRate"

}

}

Modelling an AUTOSAR Adaptive application in Simulink

Adaptive

Application

RequiredPort

3333

“Hazard" : {

// events

"event" : {

“leftHazardIndicator”

“rightHazardIndicator"

},

// methods

"method" : { },

// fields

"field" : { }

}

Modelling an AUTOSAR Adaptive application in Simulink

Adaptive

Application

ProvidedPort

3434

“Hazard" : {

// events

"event" : { },

// methods

"method" : {

“calibrate"

“adjust"

},

// fields

"field" : { }

}

Modelling an AUTOSAR Adaptive application in Simulink

Adaptive

Application

ServerClient

3535

Model synchronous/blocking methods

▪ Use case

– Client needs method results to proceed

– Blocks on method call

▪ Simulink supports modelling of methods

– Blocking Request-Response methods

– Fire-Forget Methods

void mBrakingSystem::DistanceMonitor()

{

...

auto GetBrakeLightsFuture = LightRPort->GetBrakeLights(1);

auto GetBrakeLightsResult = GetBrakeLightsFuture.GetResult();

if (GetBrakeLightsResult.HasValue()) {

GetBrakeLights::Output callOutput = GetBrakeLightsResult.Value();

rtb_FunctionCaller1 = callOutput.y;

}

...

}

Client Pseudo-code:

Method client:

Modeled by function-caller block

and function element port

3636

Model asynchronous/non-blocking methods

▪ Use case

– Clients need not wait for method results

– Register a call-back to process method output

▪ Simulink supports modelling of methods

– Non-blocking Request-Response methods

void mBrakingSystem::DistanceMonitor()

{

...

auto GetBrakeLightsFuture = LightRPort->GetBrakeLights(1);

auto callbackGetBrakeLightsFuture = GetBrakeLightsFuture.then(

&mAsyncBrakingSystem::GetBrakeLightsCallback);

...

}

Client Pseudo-code:

void mAsyncBrakingSystem::GetBrakeLightsCallback(

ara::core::Future<GetBrakeLights::Output>

futureObj)

{

auto GetBrakeLightsResult = futureObj.GetResult();

if (GetBrakeLightsResult.HasValue()) {

GetBrakeLights::Output callOutput =

GetBrakeLightsResult.Value();

BrakeController(callOutput.y);

}

}

Method call and callback registration

Method callback body

3737

AUTOSAR Adaptive in action: bottom-up

Legacy Simulink model

Add blocks to make the necessary event and signal connections

AUTOSAR

Quick Start

3838

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

3939

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

4040

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

4141

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

• Configure Service Discovery

4242

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

• Configure Service Discovery
Subscribe to adaptive services

– Only at startup, or

– Dynamically, as they become

available

4343

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

• Configure Service Discovery

• Verify AUTOSAR properties

4444

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

• Configure Service Discovery

• Verify AUTOSAR properties

4545

AUTOSAR Adaptive in action: top-down

• Create model from ARXML

• Configure Service Discovery

• Verify AUTOSAR properties

• Generate code

4646

AUTOSAR Adaptive in action

• Create model from ARXML

• Configure Service Discovery

• Verify AUTOSAR properties

• Generate code

▪ Integrate Applications with third-

party Adaptive stack

▪ Create Linux executables for

calibration and monitoring

4747

AUTOSAR Adaptive Deployment

▪ Create Linux executables for Run-Time

Calibration and Measurement

▪ Run-time logging (ara::log) for adaptive

executables

– Forward event logging information to a

console, file, or network, as defined in the

AUTOSAR Diagnostic Log and Trace

specification

4848

Agenda

• Software-defined vehicles and new architectures (SOA)

• SOA Concepts

• MathWorks Solutions for SOA

• Adaptive AUTOSAR

• DDS/ROS

• Conclusions and key takeaways

4949

Simulink for DDS

Data Distribution Services (DDS) uses SOA methodology, and directly addresses
publish and subscribe communications for real-time and embedded systems.

DDS addresses the needs of applications that require real-time data exchange in
industries like aerospace and defense, automotive, and robotics.

DDS

Libraries

5050

DDS (Data Distribution Services) is part of

AUTOSAR Adaptive Deployment

▪ Supports DDS binding for ara::com enabling

communication between adaptive AUTOSAR

applications

– Generated ServiceInstanceManifest.

arxml contains DDS deployment

artifacts

5151

User Workflow with DDS Blockset

Interface definitions

QoS definitions

(XML)

Creates

From

central repo

Simulink

Data

Dictionary

Import Generate

IDL/XML

+

Vendor

support

DDS UI

DDS Databus

Deploy

1

2

3

4

5

6

Simulink + DDS Blockset

5252

DDS Blockset in action

• Import DDS definitions from XML or create

new Definitions

5353

DDS Blockset in action

• Import DDS definitions from XML or create

new Definitions

• Define/Modify DDS definitions in DDS

Dictionary

– Topic Types

– Domains

– QoS

5454

DDS Blockset in action

• Import DDS definitions from XML or create

new Definitions

• Define/Modify DDS definitions in DDS

Dictionary

• Model applications

Use DDS Blocks to model a Publisher or

Subscriber

5555

DDS Blockset in action

Use Simulink to model and simulation Quality

of Services (QoS) policies including history to

verify the runtime behavior.

• Import DDS definitions from XML or create

new Definitions

• Define/Modify DDS definitions in DDS

Dictionary

• Model applications

• Simulate DDS models including QoS

5656

DDS Blockset in action

With Embedded coder, generate

– C++ production code with DDS APIs

– XML or IDL files from Simulink models to deploy

• Import DDS definitions from XML or create

new Definitions

• Define/Modify DDS definitions in DDS

Dictionary

• Model applications

• Simulate DDS models including QoS

▪ Generate DDS executables and deploy on

a DDS network

5757

Model DDS application

Full integration with third-party DDS stacks including RTI Connext, RTI Micro and eProsima Fast DDS

• Import DDS definitions from XML or create

new Definitions

• Define/Modify DDS definitions in DDS

Dictionary

• Model application algorithms

• Simulate DDS models including QoS

▪ Generate DDS executables and deploy on

a DDS network

5858

Agenda

• Software-defined vehicles and new architectures (SOA)

• SOA Concepts

• MathWorks Solutions for SOA

• Adaptive AUTOSAR

• DDS/ROS

• Conclusions and Key Takeaways

5959

Conclusions

Challenges

▪ Automotive E/E and SW architecture are evolving, pushed by need for

advanced, complex functions

▪ New, service-oriented architectures are required to master complexity

and enable frequent updates

Solutions

▪ You can design, simulate and generate code to deploy service-oriented

applications (including AUTOSAR Adaptive and DDS) in Simulink

▪ You can reuse your existing expertise and models to mitigate the risk of

migration to SOA applications

6060

Reach out to us
Rajat Arora rarora@mathworks.com

Nukul Sehgal nsehgal@mathworks.com

To find more Info:

Service-Oriented Architectures

with Simulink Ebook

(mathworks.com)

Designing and Deploying Service-

Oriented Architectures (SOA) with

Simulink Video - MATLAB &

Simulink (mathworks.com)

SOA - MATLAB & Simulink

(mathworks.com)

mailto:rarora@mathworks.com
mailto:nsehgal@mathworks.com
https://www.mathworks.com/content/dam/mathworks/ebook/soa-ebooklet.pdf
https://www.mathworks.com/videos/designing-and-deploying-service-oriented-architectures-soa-1621961560309.html?s_tid=srchtitle_SOA_2
https://www.mathworks.com/discovery/soa.html?s_tid=srchtitle_SOA_1

61

Thank you

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks

for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

