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Machine Learning is a key technology driving the Al megatrend

ARTIFICIAL INTELLIGENCE (Al)

Any technique that enables MACHINE LEARNING

_ __ Statistical methods that enable machines to “learn” tasks from data without explicitly
machines to mimic human .
_ _ programming
intelligence

UNSUPERVISED LEARNING SUPERVISED LEARNING
(No Labeled Data ) (Labeled Data )
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¥
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DEEP LEARNING
(Neural networks with
many layers)

REINFORCEMENT LEARNING
(Interaction Data)



https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.mathworks.com/discovery/reinforcement-learning.html
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Brief Overview for Al-driven system design
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Drass Develops Deep Learning System for Real-Time Object
Detection in Maritime Environments

Challenge
Help ship operators monitor sea environments and detect
objects, obstacles, and other ships

Solution

Create an object-detection deep learning model that can
be deployed on ships and run-in real time

First day of object detection tests with optronic system

prototype.
Results
= Data labeling automated “From data annotation to choosing, training, testing,
and fine-tuning our deep learning model, MATLAB
= Development time reduced had all the tools we needed—and GPU Coder
enabled us to rapidly deploy to our NVIDIA GPUs
= Flexible and reproducible framework established even though we had limited GPU experience.”

- Valerio Imbriolo, Drass Group

Link to user story



https://www.mathworks.com/company/user_stories/drass-develops-deep-learning-system-for-real-time-object-detection-in-maritime-environments.html

Drass Develops Deep Learning System for Real-Time Object
Detection in Maritime Environments

Challenge
Help ship operators monitor sea environments and detect

objects, obstacles, and other ships
Solution

Create an object-detection deep learning model that can
be deployed on ships and run-in real time

prototype.

Results

= Data labeling automated (From 3 mins per frame to 0.3« gata annotation to choosing, training, testing,
SECS per framg) and fine-tuning our deep learning model, MATLAB

= Development time reduced (From 18 months to 10 ] T T s e everdtadlerdl @ Bl e
months)

= Flexible and reproducible framework established
(modify, retrain, update and reintegrate with minimal
effort)

Link to user story

enabled us to rapidly deploy to our NVIDIA GPUs
even though we had limited GPU experience.”
- Valerio Imbriolo, Drass Group



https://www.mathworks.com/company/user_stories/drass-develops-deep-learning-system-for-real-time-object-detection-in-maritime-environments.html
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Scaling Al-driven systems

Dev Ops

Development Operations
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Electric batteries are everywhere. Effective management increases
vehicle availability and reduces costs.

Hybrid electric city bus

Industrial robots 6
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Monitoring battery health is good. Predicting it is better.

X A
:1,:»-»@

?




Predictive maintenance enables downtime to be scheduled rather

than disruptive.
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Understanding the lifecycle of a machine learning solution lets you
know if you've automated all of it.

Dev Ops
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Development Operations
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Automating development requires deep knowledge of the domain.
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Probability (%)

Automatic drift detection compares the observed data to the training
data to determine when retraining is required.

Distribution of Temperature Data [ . . \
T e 4 A Model Training

Drift Detection
1 Histogram for x2
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High-fidelity physical models accurately label observed data.
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AutoML selects the model and hyperparameters that perform best
on the drifting data.
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Let us remind ourselves the blueprint of the automated solution.

Optimization Progress

/}wodebbased
labeling

~

o V.

Development Operations

= Vatr

S —

4 A‘ )
JS&x)

L

D . ft D t t .
Histogram for x2
P-Value: 0.003 Drift Status: Drift

MATLAB EXIPO
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Let us remind ourselves the blueprint of the automated solution.
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Data is everything for Machine Learning.
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Physics-based simulation allows realistic data generation.
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Physics-based simulation allows realistic data generation.
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Physics-based simulation allows realistic data generation.
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Physics-based simulation allows realistic data generation.
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AutoML paves the way for automated training of data-driven algorithms.
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AutoML “automagically” finds the right model.
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AutoML paves the way for automated training of data-driven algorithms.
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AutoML paves the way for automated training of data-driven algorithms.
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Machine Learning models generally assume training data is static.

1 Xtrain» Ytrain
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Static data assumption rarely holds in the real world.
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Detecting concept drift is challenging, detecting data drift is easier

and practical.
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Drift monitoring periodically checks for and detects changes in data.
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Variable Names

Per-feature drift can be visualized, interpreted and assessed in an

automated way or with human supervision.

Estimated P-Values and Confidence Intervals

SoC_Std '

SoC_SNR
SoC_RMS
SoC_PeakValue
SoC_Mean
Voltage_Kurtosis
Voltage_Std
Voltage SNR
Voltage_ RMS
Voltage_PeakValue
Current_Mean
Current_Kurtosis
Current_ THD
Current_SNR

"1 v "1 7T T1TT1TTTTTT11

Current_PeakAmp3

T

|

T T

~ Stable i
Warning :
- Drift T
Warning Threshold
-~ Drift Threshold i

|

0 0.05

0.1

0.15 0.2 0.25 0.3

P-Values

4\ < RN
— A —
&
— Metrics
Dashboard

Model-based

labeling
S&dig =

e la

ECDF for PeakValue
P-Value: 0.001 Drift Status: Drift

Jine
et

,v""'_l |

77 78 7.9 8 81 82 83
PeakValue

8.4

29



Drift monitoring system enhances automated solution with the ability
to forecast when models may require retraining.
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Drift monitoring system enhances automated solution with the ability

to forecast when models may require retraining.
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Model-based labeling system is high fidelity, but slow. Used for

labeling only when prompted.
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Drift resulting in model performance degradation triggers retraining.
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Drift resulting in model performance degradation triggers retraining.
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Model in production is replaced if challenger model has better

performance.
4 ?
MSE( fchallenge'r(x)I ) Y) <MSE(
\_ y,
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Model in production is replaced if challenger model has better

performance.

f champion (x)
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The train-deploy-monitor-label cycle automatically works on its own.
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Production system architecture mirrors the stages of the Dev Ops

cycle.
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Off the shelf components minimize development effort.
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Data management drove the architecture. The development
environment needs Dev Ops-specific features.
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Prediction requires a complete frame of observations from a single
battery, but the stream may not oblige.
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Build complete frames efficiently with message grouping and

accumulation.

Iy

Iy
Iy

[IIII' T N A T T % [T A IIII']

\'@))

oI
cIm
- —

Temporary
Storage

MATLAB BEXlPO

42



Per-battery stream partitioning enables horizontal scaling.

MATLAB BEXlPO
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MATLAB BEXlPO

Model registry enables multiple predictors to update simultaneously.

[Predict] [Predict]

® B [

[Predict} [Predict]
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MATLA

Debug and test with desktop server before deploying to production.

M
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J MATLAB R2022a - prerelease use

HOME PLOTS APPS ‘D Q‘TJP '_a_ @p w'% & H}i @,Q'@ @'}@@ Search Documentation
@ @ ﬁ‘:;j 3 =] Find Files 1&1 @ L_E(;, Variable ¥ E‘ﬁ |.s# Analyze Code ':é) {Q Preferences (% @ % Community

| k> = =
New New New Open (=] Compare Import Clean [:E;i;SaveWorkspace Favorites o R sod T Simulink  Layout [ Set Path Add-Ons Help [ heqaest Supgott

Script LiveScript ¥ A Data Data [Z? Clear Workspace ¥ > [## Clear Commands ¥ o Il Parattel ~ s v [Z] Learn MATLAB
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES

<EH HG A » S » BigThings » 2021 » AutoML »
Current Folder (OGN Command Window
Name fx >> | Name
BatteryData @] ctrl
batteryl.mat E@ esp
battery9.mat |&@] inKs

(OB Workspace

battery10.mat [ﬁ__a) outKS
battery17.mat &ﬁn
battery20.mat
LabeledData
gllabeled-17-No...
g2labeled-17-No...
MachinelLearning

Machinel earninn.orin

ObservedData (Folder) v

No details available




Interactive access to streaming data simplifies model development.

hattarv fccv
Battery Data Stream

Read Data and Results:
Strdams

Predictive Predictive
Maintenance Maintenance
Model Model

Write

Battery Health Results Stream
health.mat




MATLAI

Schema-controlled data import transforms JSON-encoded
streaming data into native types.

= >> ks = kafkaStream(host, port, topic);
st s ST >> tt = readtimetable(ks)

IITiII : ]

IIT2II :

"SoC_B1": 0.5,

"Sol B2": @.5 18300=8 timetable

"SoH": @,
“kDH“ N timestamp Current Voltage T1 T2
':E'fg' v 2
01-Nov-2021 00:00:00 0 7.6034 307.36 307.36
01-Nov-2021 00:00:01 2.6958 7.4188 307.36 307.48
"schema®: [ D1-Nov-2021 00:00:02 2.6961 7.4182 307.37 307.59
{ 01-Nov-2021 00:00:03 2.6963 7.4175 307.38 307.69
—Nov-— :00: 2 .65 7.4168 7.36 7.7%9
"name: "Current®. 01-Nov-2021 00:00:04 2.6966 416 307.39 307.79
01-Nov-2021 00:29:55 -2.534 7.8926 30964 311.09
01-Hov-2021 00:29:56 -2.533%9 7.8929 309.64 311.0%
1. 01-Hov-2021 00:29:57 -2.5338 7.8932 309.64 311.0%
M3 oo o L
missingValue": O, 01-Nov-2021 00:29:58 -2.5337 7.8935 309.64 311.09
"categorical": false 01-Nov-2021 00:29:59 -2.5336 7.853% 309, 64 311.08
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Deployable physical models enable automation and speed
retraining.
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Your development toolchain needs a virtual production environment,
native access to streams and deployable physical models.
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Automating the Dev Ops cycle

6)

Individual Battery - Grafana

/) MATLAB R20223 - prerelease use

HOME

E]L @ E‘\}' (b [q Find Files &

New New New Open [{Z] Compare !mport Clean

Script Live Script ¥

FILE

tié, Variable ¥
Eé SaveWorkspace

aot Data Data %} Clear Workspace ¥ v
VARIABLE

Favorites

L .A‘!'g'f{‘ g (2 ‘l'q Search Documentation

R

|.s? Analyze Code E {0} Preferences &

é? Run and Time Skl i (5 Set Path Add-Ons  Help 3 Request Support

@ Clear Commands ¥ v "“ Parallel ¥ hd v  [Z] Learn MATLAB
CODE SIMULINK ENVIRONMENT RESOURCES

@ Community

el A Sign In

SHPEAH
Current Folder

Name «

S BatteryData
batteryl.mat
battery9.mat
battery10.mat

-| battery17.mat
[ battery20.mat
LabeledData

| gllabeled-17-No...

» S: » BigThings » 2021 » AutoML »
®  Command Window

$ Predict & detect drift using Gen 1 model
disp ("Generation 1")

disp ("Predict")
tic,execute (esp,1000),toc

disp ("Detect Drifc")
tic,detectBatteryDrift(l),toc

1| g2labeled-17-No...

& Machinelearning

[+ Machinel earnina.oria Y

disp ("Retrain")
tic,labelBatteryData(l),toc

ObservedData (Folder)

No details available

v
$ Predict & detect drift using Gen 2 model
disp ("Generation 2")

disp ("Predict"™)
seek (esp, "beginning”) ;
tic,execute (esp, 1000),toc

disp ("Detect drift")
tic,detectBatteryDrift(2),toc

@ outKS

bt

\V/ar1 cinetate 2 DealkValue
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Automate the entire Dev Ops cycle and your machine learning
models can change for the better, by themselves. ‘ N
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Development Operations
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