MATLAB EXPO 2019

Understanding and Modeling the 5G NR Physical Layer

Marc Barberis

Objectives

Understand some of 5G NR Physical Layer & Beyond

See how 5G Toolbox can help you

URLLC Ultrareliable and Self Driving

Voice

Industry Automation

Gigabyte/sec data transfer

3D videos, UHD

Smart Home/Building

Smart CityBE

Enhanced Mobile Broadband **mMTC** Mission Critical Applessive Machine

How different is 5G NR from 4G??

Let's have a look at a few differences

MATLAB EXPO 2019

5G vs LTE: Main Physical Layer Differences

	LTE	5G
Use cases	Mobile broadband access (MTC later)	More use cases: eMBB, mMTC, URLLC
Latency	~10 ms	<1 ms
Band	Below 6 GHz	Up to 60 GHz
Bandwidth	Up to 20 MHz	Up to 100 MHz below 6 GHz Up to 400 MHz above 6 GHz
Subcarrier spacing	Fixed	Variable
Freq allocation	UEs need to decode the whole BW	Use of bandwidth parts
"Always on" signals	Used: Cell specific RS, PSS,SSS, PBCH	Avoid always on signals, the only one is the SS block

5G NR Waveform Analysis

5G NR Waveform Analysis

MATLAB EXPO 2019

Not so fast...

The fundamentals.

Let's step back a little

Operating Frequencies

Standard defines two frequency ranges

Frequency Range	Frequency	Duplex Mode
FR1	410 MHz - 7.125 GHz	TDD and FDD
FR2	24.25 - 52.6 GHz	TDD

Basic Principles: Similar to LTE

- Mostly same channels: data, control, broadcast, random access...
- Two operating modes: FDD and TDD (*)
- OFDM-based (**)

but with different values for subcarrier spacing

(**) Frequency Division Duplex, Time Division Duplex(*) Orthogonal Frequency Division Multiplexing

12

OFDM Modulation and Subcarrier Spacing

1.2 0.8

When subcarrier spacing x 2, The OFDM symbol duration $x^{1}/_{2}$ MATLAB EXPO 2019

Numerology and Subcarrier Spacing

		Slot	configurat	ion 0	
Subcarrier spacing (kHz)	15	30	60	120	240
Symbol duration (no CP) (µs)	66.7	33.3	16.6	8.33	4.17
Nominal max BW (MHz)	49.5	99	198	396	397.4
Min scheduling interval (ms)	1	0.5	0.25	0.125	0.0625

 This flexibility is required to support different services (eMBB, mMTC, URLLC) and to meet short latency requirements

MATLAB EXPO 2019

Numerology and Subcarrier Spacing

		Slot configuration 0			
Subcarrier spacing (kHz)	15	30	60	120	240
Frequency range supported	< 60 (data 8	GHz & sync)	Everywhere (data)	> 6GHz (data & sync)	> 6GHz (sync)
Symbol duration (no CP) (µs)	66.7	33.3	16.7	8.33	4.17
Symbol duration with CP (µs)	71.4	35.6	17.9	8.92	4.46
Min scheduling interval (ms)	1	0.5	0.25	0.125	0.0625
– 1 SIOT (14 SYMDOIS)					
EXPO 2019	Cell size Delay sj	e : Large pread: Long		۲ Cell size : Delay spre Large sub	Small ead: short carrier: fight fr and p

 Δf

.....

MATLAB EXPO 2019

14

Slots and OFDM Symbols (Normal CP)

	Subcarrier spacing (kHz)	Symbols/slot	Slots/subframe	
	15	14	1	
	30	14	2	
	60	14	4	
	120	14	8	
	240	14	16	
	4	subframe		
		slot: 1 ms		
15 kHz				
	slot: 0.5 ms			
30 kHz				
	slot: 0.25 ms			
60 kHz MATLAE				

Bandwidth Parts (BWP)

- Define a carrier as the addressable bandwidth
- Define a bandwidth part as the active part of the carrier

- BWPs address the following issues:
 - Devices may not be able to receive the full BW
 - Bandwidth adaptation: reduce energy consumption when only narrow bandwidth is required

Bandwidth Parts (BWP): Bandwidth Adaptation

- A UE can be configured with up to 4 bandwidth parts
- Only one bandwidth part is active at a time
- UE is not expected to receive data outside of active bandwidth part

Resource Elements and Resource Blocks

Remember this picture??

19

Obervations?

How does a phone get onto the network?

Synchronization Signal Block

- Primary Synchronization Sequence
 - One of 3 possible sequences
 - Provides timing estimate
- Secondary Synchronization Sequence
 - One of 336 possible sequences
 - Provides cell ID (one of 3*336 = 1008)
- Broadcast Channel and DMRS
 - Contains MIB = Master Information Block
 - Includes basic information to take next step: decode SIB1 (System Information Block)

PBCH Content

• MIB contents (constant over 80 ms or 8 frames)

Cell barred flag	Are devices allowed in the cell?
First PDSCH DM-RS position	Time domain position of 1 st DM-RS (type-A)
SIB1 numerology	SIB1 subcarrier spacing
SIB1 configuration	Search space, CORESET and PDCCH parameters
CRB grid offset	Freq domain offset between SS block and common resource grid
SFN	System frame number

Other PBCH content (not constant over 80 ms)

SS block index	SS block time domain index (only present for FR2)
Half frame bit	Is the SS block in the 1 st or 2 nd half of the frame?
SFN (4 LSB)	4 least significant bits of SFN
CRC	Cyclic redundancy check (24 bits)

MATLAB EXPO 2019

Synchronization Signal Burst

MATLAB EXPO 2019

Each SS Block is beamformed with a different pattern

The receiver sees different beams with different signal strengths

- Transmitter can focus energy is narrower beams
- Up to 64 possible beams for mmW: massive MIMO support

MATLAB EXPO 2019

Wait a minute....

Coming back to our picture...

SS Block Functionality Summary & Demonstration

- Synchronization:
 - Symbol synchronization
 - Frame synchronization
- MIB decoding
- Beam search

Demonstrates how to construct a waveform containing a synchronization signal burst (SS burst), pass the waveform through a

MATLAB Example

Data, Control, CORESETS

Let's look at another 5G waveform: Test Model

This MATLAB code creates an hNRReferenceWaveformGenerator object for the selected NR-TM or FRC configuration. You can use this object to generate the associated baseband waveform and to display the underlying PRB and subcarrier-level resource grids.
% Select the NR-TM or FRC waveform parameters
nrref = NR-FR2-TM2 (; % Model name and properties
bw = $50MHz$ (FR1 & FR2) -; % Channel bandwidth
scs = 60kHz(FR1 & FR2) -; % Subcarrier spacing
dm = FDD •; % Duplexing mode
ncellid = 1 •; % NCellID
sv = V15.2.0 •; % TS 38.141-x version (NR-TM only)
% Run this entire section to generate the required waveform Generate
<pre>% Create generator object for the above reference model refwavegen = hNRReferenceWaveformGenerator(nrref,bw,scs,dm,ncellid,sv)</pre>

NR-TM2-FR2 OFDM Grid

BWP 1 in Carrier (SCS=60kHz). PDSCH, PDCCH and CORESET location

MATLAB EXPO 2019

CORESETs (Control Resource Sets)

A MathWorks

CORESETs (Control Resource Sets)

- Set of time/frequency resources where PDCCH can be transmitted
- Semi-statically configured by the network
- There can be many CORESETs in a carrier
- Can occur anywhere in the slot and in the frequency range of the carrier
- Max length of 3 symbols

Main Difference with LTE Control Region

Does not span the whole bandwidth

- Advantages
 - Supports limited bandwidth capabilities
 - Saves power

Control (PDCCH)

Downlink Control in 5G NR

DCI (Downlink Control Information)

Carries control information used to schedule user data (PDSCH or PUSCH)

Physical Downlink/Uplink Shared Channel

- Carried in the PDCCH (Physical Downlink Control Channel)
- Indicates:
 - Where is the data for a user? (time/frequency)
 - Modulation and coding scheme
 - HARQ related aspects (RV, process number, new data indicator)
 - Antenna ports and number of layers

Users need to decode DCI before they can decode or transmit data

MATLAB EXPO 2019

. . .

DCI Processing Chain

- Main difference with LTE: use of polar coding
- CRC scrambled with RNTI

PDCCH Processing Chain (Physical Downlink Control Channel)

- Carries the DCI
- Modulated using QPSK

DCI: PDSCH Scheduling

DCI: PUSCH Scheduling

٠

Downlink Data in 5G NR

Downlink Shared Channel (DL-SCH)

- Carries user data
- Can also carry the System Information Block (SIB)
- Main difference with LTE: use of LDPC coding
- Up to 8 layers = MIMO support
- Mapped to the PDSCH

More on that later

Downlink Shared Channel (DL-SCH) Single Codeword

Physical Downlink Shared Channel (PDSCH)

- Highly configurable
- Parameters are configured by:
 - DCI (Downlink Control Information)
 - RRC (Radio Resource Control)

Physical Downlink Shared Channel (PDSCH)

Modulation scheme	Modulation order
QPSK	2
16QAM	4
64QAM	6
256QAM	8

PDSCH Multi-antenna Precoding

- Achieves beamforming and spatial multiplexing
- Maps layers to antenna port
- Uses a precoding matrix W_{Nantennas x Nlayers}
- DM-RS has to go through the same precoding operation

Physical Downlink Shared Channel (PDSCH)

PDSCH Mapping Types

Two types of mapping

• First DM-RS in symbol 2 or 3 of the slot MATLAB EXPO 2019

- DM-RS in first symbol of the allocation
- PUSCH partially mapped to slot

SIB1 and RACH

Remember: PBCH Content

• MIB contents (constant over 80 ms or 8 frames)

Cell barred flag	Are devices allowed in the cell?
First PDSCH DM-RS position	Time domain position of 1 st DM-RS (type-A)
SIB1 numerology	SIB1 subcarrier spacing
SIB1 configuration	Search space, CORESET and PDCCH parameters
CRB grid offset	Freq domain offset between SS block and common resource grid
SFN	System frame number

SIB1 is the next piece of information the UE needs to connect to the network

SIB1 Transmission

- SIB1 is transmitted on PDSCH with associated control (PDCCH)

- SIB1 is transmitted repeatedly with beamforming
- Once SIB1 is decoded, UE is ready to send a RACH (random access)

Random Access Channel (RACH)

Used to access the network – or send scheduling requests

Random Access Procedure

Device that recognized its device identity declares procedure successful and uses temporary RNTI as actual RNTI henceforth

MATLAB EXPO 2019

Final look at the waveform – and 5G Toolbox

Remember this picture??

57

MATLAB 5G Toolbox Demodulation

MATLAB EXPO 2019

Challenges 56 Toolbox ...

... lets you focus on what matters

MATLAB EXPO 2019

5G Toolbox applications & use-cases

Waveform generation and analysis

 New Radio (NR) subcarrier spacings and frame numerologies

End-to-end link-level simulation

- Transmitter, channel model, and receiver
- Analyze bit error rate (BER), and throughput

Golden reference design verification

 Customizable and editable algorithms as golden reference for implementation

5G Toolbox has open customizable algorithms

• All functions are

Open, editable, customizable MATLAB code C/C++ code generation:
 Supported with MATLAB Coder

5G Toolbox: Content detail

- Waveform generation
 - Transport channels, physical channels and signals
 - Synchronization bursts
- Transmit and receive for DL and UL
- TDL and CDL channel models
- Reference designs as detailed examples
 - Link-level simulation & throughput measurements
 - Cell search procedures
 - Measurements (ACLR)

5G Waveform Generation

5G NR-TM and FRC Waveform Generation

This example shows how to generate standard-compliant 5G NR test models (NR-TMs) and downlink fixed reference channels (FRCs) for frequency range 1 (FR1) and FR2. For the NR-TM and FRC waveform generation, you can specify the NR-TM or FRC name, the channel bandwidth, the subcarrier spacing, and the duplexing mode.

% Select the NR-TM or FRC waveform parameters

% Run this entire section to generate the required waveform Generate

% Create generator object for the above reference model refwavegen = hNRReferenceWaveformGenerator(nrref,bw,scs,dm,ncellid,sv)

% Generate waveform

[refwaveform,refwaveinfo] = generateWaveform(refwavegen);

(... •, ; % Model name and properti NR-FR1-TM3.2 NR-FR1-TM1.1 (Full band, uniform QPSK) NR-FR1-TM1.2 (Full band, boosted QPSK & deboosted QPSK) NR-FR1-TM2 (Single PRB,64QAM) NR-FR1-TM2a (Single PRB,256QAM) NR-FR1-TM3.1 (Full band, uniform 64QAM) NR-FR1-TM3.1a (Full band, uniform 256QAM) NR-FR1-TM3.2 (Full band.deboosted 16QAM & boosted QPSK) NR-FR1-TM3.3 (Full band.deboosted QPSK & boosted 16QAM) NR-FR2-TM1.1 (Full band, uniform QPSK, PT-RS) NR-FR2-TM2 (Single PRB,64QAM,PT-RS) NR-FR2-TM3.1 (Full band.uniform 64QAM.PT-RS) DL-FRC-FR1-QPSK (Full band.coded QPSK) DL-FRC-FR1-64QAM (Full band.coded 16QAM) DL-FRC-FR1-256QAM (Full band,coded 256QAM) DL-FRC-FR2-QPSK (Full band.coded QPSK) DL-FRC-FR2-16QAM (Full band,coded 16QAM) DL-FRC-FR2-64QAM (Full band,coded 64QAM,PT-RS) 8 30 Carrier 25 20 15

10 5

20

40

80

Symbols

100

120

140

H and CORESET location

MATLAB EXPO 2019

End-to-end link-level simulation : NR PDSCH Throughput

Command Window $f_{x} >>$ NewRadioPDSCHThroughputExample (8x2) / NDLRB=51 / SCS=30kHz Throughput (%) -10 -5 SNR (dB)

End-to-end link-level simulation : NR PUSCH Throughput

Cell search and selection procedures

- Obtain cell ID and initial system information including Master Information Block (MIB)
- Perform the following steps:
 - Burst generation
 - Beam sweep
 - TDL propagation channel model and AWGN
 - Receiver synchronization and demodulation

Send a 5G NR downlink waveform containing an SS burst and decode the MIB.

5G NR Downlink ACLR Measurement

% Select the NR-TM waveform parameters [NR-FR1-TM1.1 (... •]; % NR-TM name and properties nrtm = K Channel bandwidth K 20MHz (FR1) bw = 15kHz (FR1) % Subcarrier spacing SCS = FDD % Duplexing mode dm = % Create generator object for the above NR-TM tmwavegen = hNRReferenceWaveformGenerator(nrtm,bw,scs,dm); % Generate waveform [tmwaveform,tmwaveinfo] = generateWaveform(tmwavegen); samplingrate = tmwaveinfo.Info.SamplingRate; % Waveform sampling rate (Hz) % Visualize the associated PRB and subcarrier resource grids displayResourceGrid(tmwavegen); \star Spectrum Analyzer % Apply required oversampling resampled = resample(filtWaveform,aclr.OSR,1);

% Calculate NR ACI R aclr = hACLRMeasurementNR(aclr,resampled);

Processing

× 10⁴

5G Toolbox Summary

5G NR waveform generation

% Generate waveform
[refwaveform,refwaveinfo] = generateWaveform(refwavegen);

Full MATLAB source code

End-to-end link-level simulation & synchronization

% Encode the DL-SCH transport blocks

codedTrBlock = encodeDLSCH(pdsch.Modulation,pdsch.NLayers,...
pdschIndicesInfo.G,hargProcesses(hargProcIdx).RV,hargProcIdx-1);

% PDSCH modulation and precoding

pdschSymbols = nrPDSCH(codedTrBlock,pdsch.Modulation,pdsch.NLayers,gnb pdschSymbols = pdschSymbols*wtx;

MATLAB EXPO 2019 5G Toolbox lets you focus on what matters

How to learn more

 Go to 5G Toolbox product page www.mathworks.com/products/5g

Watch the 5G Toolbox video

	camples Functions Sector
CONTENTS Close	
« Documentation Home	5G Toolbox
	Simulate, analyze, and test the physical layer of 5G communications systems
MATLAB	5G Toolbox™ provides standard-compliant functions and reference examples for the modeling, simulation,
Simulink	and verification of 5G communications systems. The toolbox supports link-level simulation, golden reference
SG TOOIDOX	verification and conformance testing, and test waveform generation.
Getting Started with 5G Toolbox	With the toolbox you can configure, simulate, measure, and analyze end-to-end communications links. You can modify or customize the toolbox functions and use them as reference models for implementing 5G
Downlink Channels	systems and devices.
Physical Layer Subcomponents	The toolbox provides reference examples to help you explore baseband specifications and simulate the
Signal Reception	effects of RF designs and interference sources on system performance. You can generate waveforms and
End-to-End Simulation	customize test benches to verify that your designs, prototypes, and implementations comply with the 3GPI 5G New Radio (NR) standard
lest and Measurement	
Code Generation and Deployment	
Aerospace Blockset	Getting Started
Aerospace Toolbox	Learn the basics of 5G Toolbox
Antenna Toolbox	Downlink Channels
Audio System Toolbox	5G NR downlink channel processing for physical signals and channels, transport channels, and control info
Automated Driving System Toolbox	
Bioinformatics Toolbox	Physical Layer Subcomponents
Communications Toolbox	Low-level subcomponents for 5G INK channel processing

 Watch the "5G Explained" Series: <u>https://www.mathworks.com/videos/series/5g-explained.html</u>

Thank You!

