MATLAB EXPPO

Master Class: Driving into the Future:

Al-Enabled Autonomous Systems

Dr Rishu Gupta, MathWorks Peeyush Pankaj, MathWorks

é

e

- ) MathWorks




Agenda

Artificial Intelligence N

Deep Learning: Acceleration of motion planning using deep learning

Reinforcement Learning A‘
N
Developing controller for automated parking valet .\

Deployment of Al models to embedded devices




Key subsystems of an autonomous systems
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Key subsystems of an automated driving system

Image Coordinates Vehicle Coordinates

T A vyision
80 ' ® radar
lane
q

20 0 -20



MATLAB BEXlPO

Key subsystems of an automated driving system

Perception

Sensor Fusion
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Key subsystems of an automated driving system

Perception

Sensor Fusion

Planning
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Key subsystems of an automated driving system

Acceleration
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Key subsystems of an automated driving system
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Challenges in developing and testing autonomous systems

, Sensor MATLAB
Perception Fusion -
Gaming
Engine

Complexity of Al and traditional Diverse, disconnected
subsystems algorithms tools and workflows
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Planning Controls

Typical situations
with high probability

Critical situations
with low probability
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Recreating difficult Long tail of edge Billions of kms for
real-world scenarios cases* reliability test**

: . RAND report**
* Saarland University


https://www.rand.org/content/dam/rand/pubs/research_reports/RR1400/RR1478/RAND_RR1478.pdf

MATLAB

Artificial Intelligence as Key Enabler for Autonomous Systems

Planning

Algorithms

Decision & Controls

Obiject detection
Semantic segmentation
GANSs

And soon ...



MATI

Accelerate Motion Planning with Deep Learning

Y [meters]

RRT* Path
Uniform Sampling (A=0)

Binary Occupancy Grid

X [meters]

Y [meters]

Binary Occupancy Grid

X [meters]

Accelerate Motion Planning
with Deep-Learning-Based

Sampler

The example demonstrates how to
augment sampling-based planners
such as RRT (rapidly-exploring
random tree) and RRT* with a deep-

Open L\.
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https://www.mathworks.com/help/releases/R2023a/deeplearning/ug/accelerate-motion-planning-with-deep-learning-based-sampler.html?s_tid=doc_srchtitle

MATLA

Automated Parking Valet using Reinforcement Learning
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Train PPO Agent for
Automatic Parking Valet

Train a reinforcement learning agent

to park a car in an open parking

space
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https://www.mathworks.com/help/reinforcement-learning/ug/train-ppo-agent-for-automatic-parking-valet.html
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Developing controller for automated parking valet .\ T—

Deployment of Al models to embedded devices




MATLAB E

Machine Learning is a key technology driving the Al megatrend

ARTIFICIAL INTELLIGENCE (Al)

Any technique that enables MACHINE LEARNING

_ e Statistical methods that enable machines to “learn” tasks from data without explicitly
machines to mimic human .
_ _ programming
intelligence

UNSUPERVISED LEARNING SUPERVISED LEARNING
(No Labeled Data ) (Labeled Data )

+a +

¥
- g

DEEP LEARNING
(Neural networks with
many layers)

REINFORCEMENT LEARNING
(Interaction Data)



https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.mathworks.com/discovery/reinforcement-learning.html

MATLAB EX

Brief Overview for Al-driven system design

Data Preparation @ Al .00 ‘ Sin uootion & Test

Model design and @ Integration with
tuning complex systems

o5y flardware System simulation
s accelerated training -Dlj_'l y

Deployment

Embedded devices

% Enterprise systems

'|‘|'|||| Data cleansing and
preparation

Q Human insight

—[>|:|—_| Simulation-
generated data

* Interoperability :5 gzztsgic\i/;glﬁauon

|:—.._|OJ Edge, cloud, desktop

+ Labeller apps « Deep network designer ¢ CPUs, (ARM_ACL)

* Unreal co-simulation » Experiment manager/ Classification * Referen_ce appllcatlc_m fo_r Integration » Cloud (on-premise, service providers)

« Data generation- Virtual sensor Learner * Integrating Al into Simulink « Microservice Docker Containers
modelling (Camera, LIDAR, » Interoperability between DL toolbox » Deploy Imported TensorFlow Model with
RADAR) and other frameworks MATLAB Compiler

* Simscape
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https://www.mathworks.com/help/releases/R2023a/driving/automated-driving-applications.html
https://www.mathworks.com/help/releases/R2023a/deeplearning/deep-learning-with-simulink.html?s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ug/choose-a-labeling-app.html
https://in.mathworks.com/help/driving/ug/visualize-depth-semantic-segmentation-3d-simulation.html
https://in.mathworks.com/help/driving/ref/simulation3dcamera.html
https://www.mathworks.com/help/driving/ref/simulation3dlidar.html
https://www.mathworks.com/help/driving/ref/simulation3dprobabilisticradar.html
https://www.mathworks.com/help/deeplearning/ref/deepnetworkdesigner-app.html
https://www.mathworks.com/help/deeplearning/ref/experimentmanager-app.html
https://www.mathworks.com/help/releases/R2023a/stats/classificationlearner-app.html
https://www.mathworks.com/help/releases/R2023a/stats/classificationlearner-app.html
https://www.mathworks.com/help/deeplearning/ug/interoperability-between-deep-learning-toolbox-tensorflow-pytorch-and-onnx.html
https://www.mathworks.com/help/deeplearning/ug/interoperability-between-deep-learning-toolbox-tensorflow-pytorch-and-onnx.html
https://in.mathworks.com/help/coder/deep-learning-with-matlab-coder.html
https://in.mathworks.com/help/coder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/videos/deploying-generated-code-on-aws-gpus-for-deep-learning-1558697671292.html
https://www.mathworks.com/videos/create-microservice-docker-containers-with-matlab-1647931020285.html
https://www.mathworks.com/help/deeplearning/ug/deploy-imported-tensorflow-network-with-matlab-compiler.html
https://www.mathworks.com/help/deeplearning/ug/deploy-imported-tensorflow-network-with-matlab-compiler.html

MAT

Accelerate Motion Planning with Deep Learning

Path
Start
® Goal

Random Maze Dataset Uniformly Sampled space RRT*
representing occupancy map, (used by conventional motion (Rapidly Exploring Random Tree)
start & goal locations planning algorithms e.g., RRT/ RRT?*)

15



MA]

Accelerate Motion Planning with Deep Learning

Path
Start

® Goal

Random Maze Dataset RRT*
representing occupancy map, (Rapidly Exploring Random Tree)
start & goal locations

16



Al Workflow

Iterate till you find the best model using historical data

DNN

MATLA

17



Al Workflow

Predict: Integrate trained models into applications

N
7

&

- J

Trained
DNN

nd

RRT*
Planner

|

MATLAE

18



MATLAB |

Navigation Toolbox

P ath P I an n I n g Design, simulate, and deploy algorithms for autonomous navigation

4 AStar N\ /T \/ e N\ [ Truck and Trailer Trajectory Animation )
Data I I — | |
Preparation Y e R -
. o SN ‘ \ r — 10
» 10 . . 'Buuﬁ;- .‘Mi'k’” : . 3 r
Data cleansing : . r'S i Vi emiineel W : 5 ’
and preparation 150 ‘ . ‘ T Sndorn ) 4 _ : L ; e
. . *Brdsiile R - _ . .
' . . . ‘®Brisbane ' i r I I . *
Human mSIth 20 50 100 150 200 250 - ! RZONNC OO L0
o Hybrid A* Control-based RRT
Grid-based A* Graph-based A* Grid search method to Plan kinematically and
Simulation. Plan the shortest collision- Plan shortest routes in a generate a smooth path in a dynamically feasible paths
S free path through an graph network given 2-D space for vehicles with custom kinematics and
obstacle grid ma i [ [ ici
g p JAR y \Wlth nonholonomic constralnts) " control policies y
f \ ( Oceupancy Grid \ Occupancy Grid
Probabilistic Roadmap » {7 Ocoupancy Grid A
10 20 30 40 . [mmm]SD 80 70 80 a0
o e I | Bidirectional RRT
PRM _(Pl’Obab"IStl(_I Roadmap) RRT (Rapidly-Exploring Random Tree) RRT* Variant of RRT creating two search
Sampling-based planning. Search for Nearest neighbor search Converges to an optimal trees starting from both start and goal
\shortest path in a densely constructed graph ' tree incrementally from samples solution in terms of the state states simultaneously )
Qandomly drawn from a given state space) space distance

19



https://www.mathworks.com/help/nav/ref/plannerprm.html
https://jp.mathworks.com/help/nav/ref/plannerrrt.html
https://jp.mathworks.com/help/nav/ref/plannerrrtstar.html
https://www.mathworks.com/help/nav/ref/plannerbirrt.html
https://www.mathworks.com/help/nav/ref/plannerastargrid.html
https://www.mathworks.com/help/releases/R2023a/nav/ref/plannerastar.html
https://jp.mathworks.com/help/nav/ref/plannerhybridastar.html
https://www.mathworks.com/help/nav/ref/plannercontrolrrt.html

MATLAB EXF

Data Generation with RRT*

Navigation Toolbox

Design, simulate, and deploy algorithms for autonomous navigation

% Number of maps

mapMaze numMaps = 2000;

Generate random 2-D maze map % Map size in metres (assume height = weight)

Since R2021a mapsize = 1@;

Data_ % Number of states per map to exported

Prepal’atlon numstates = 10a;
StatESpaCESEZ % Create stateSpace and stateValidator
SE(2) state space stateSpace =|stateSpaceSE2; |

Data cleansing Since R2019b stateSpace.5tateBounds = [maps{1}.XWorldLimits; maps{1}.YWorldLimits; [-pi, pi]]:;

i . stateValidato o éun-kﬁe' lannerRRTStar -

and preparation validatorOccupancyMap stateValidato for 3 - 1:mumilape

State validator based on 2-D grid map waitbar(i/numMaps,f,"Generating samples...");

Since R2079b
% Inflate obstacle to get safe paths

binaryOccupancyMap map =[binaryOccupancylap(maps{i},10); |
inflate({map, 4, 'grid")

Human insight

pRes);
Create occupancy grid with binary values E—

Simulation-
generated data

% Create planner object

plannerRRTStar planner = |planner‘RRTStar‘{5tate5pace, 5'ta1:e'l.l'alidatm*:|;|
Create an optimal RRT path planner (RRT*) planner.ContinueAftertGoalReached = true; ¥ optimize
Since R2019b planner.MaxConnectionDistance = 1;

planner.GoalReachedFcn = @examplerHelperCheckIfGoalReached;

planner.MaxIterations = 2080;

20



MATLAB

Data Generation with RRT*

Data
Preparation

Data cleansing
and preparation

Human insight

Simulation-
generated data

Navigation Toolbox

Design, simulate, and deploy algorithms for autonomous navigation

mapMaze

Generate random 2-D maze map
Since R2021a

stateSpaceSE2

SE(2) state space
Since R2079b

validatorOccupancyMap

State validator based on 2-D grid map
Since R2019b

binaryOccupancyMap

Create occupancy grid with binary values

plannerRRTStar

Create an optimal RRT path planner (RRT*)
Since R2019b

Y [meters]
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*No. of samples to be generated = 2000
21



MATLAB

Data Generation with RRT*

Data
Preparation

Data cleansing
and preparation

Human insight

Simulation-
generated data

Navigation Toolbox

Design, simulate, and deploy algorithms for autonomous navigation

mapMaze

Generate random 2-D maze map
Since R2021a

stateSpaceSE2

SE(2) state space
Since R2079b

validatorOccupancyMap

State validator based on 2-D grid map
Since R2019b

binaryOccupancyMap

Create occupancy grid with binary values

plannerRRTStar

Create an optimal RRT path planner (RRT*)
Since R2019b

10

Y [meters]
o

1 °
o]
0 2 4 6 8 10
X [meters]
10
9 o
8
i
= 6
&
i)
.E, 5
> 4
3
2
1 .
0
0 2 4 6 8 10
X [meters]

Y [meters]

Path
L Start
®  Goal
10
8
6
4
2
0
0 2 4 6 B 10
X [meters]
10
9 [
8
7
) 6
2
@
£ 5
> 4
3
2
1 *
0
0 2 4 G 8 10
X [meters)
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Start with a complete set of algorithms and pre-built models

@ Al Modeling

&

0, O
Wm0

W

Model design
and tuning

Hardware
accelerated
training

Interoperability

Algorithms

Pre-built models

MATLAB B>

Machine learning
Trees, Naive Bayes, SVM...

Deep learning
CNNs, GANs, LSTM, MIMO...

Reinforcement learning
DQN, A2C, DDPG...

Regression
Linear, nonlinear, trees...

Unsupervised learning
K-means, PCA, GMM...

Predictive maintenance
RUL models, condition indicators...

Bayesian optimization

Image classification models
AlexNet, GoogLeNet, VGG, SqueezeNet,
ShuffleNet, ResNet, DenseNet, Inception...

Reference examples

Object detection
Vehicles, pedestrians, faces...

Semantic segmentation
Roadway detection, land cover classification,
tumor detection...

Signal and speech processing
Denoising, music genre recognition, keyword
spotting, radar waveform classification...

...and more...

23



MATLAB BEXP

a

Deep Neural Network Training

| Search Documentation

T

LIVE EDITOR

g = =l Compare |Aa| Normal v = = @ Refactor v Section Break
6\.):'\j&]'y"n & Qg ~ = = ==
New Open Save =9 Print GoTo W Bookmark v | Text B I E M Code Control Task Run e Salanc Run Step Stop
v v ¥ & Export ¥ v 'E\%E = = = O v »i i Section Run to End v
FILE NAVIGATE TEXT CODE SECTION RUN a
<% Hal | » C » Users » rishug » MATLAB » Projects » TrainNetworkProject3 » v| R
Current Folder ® Ej Live Editor - C:\Users\rishug\MATLAB\Projects\TrainNetworkProject3\Experiment2_setup1.mix ¥ X  Workspace ®
Name ~ +'1 | TryDifferentNetworkArchitectures_setup1.mix | testAccuracy.mix | Experiment2_setupl.mix | + Name ~ Value
[Z) TrainNetworkProject3.prj . s 3 - =
B Hyperparamieter Tuning.mat Built-In Training Experiment Using trainNetwork
& Experiment2_setup1.mlx Use this setup function to define the training data, network architecture, and training options
(& Experiment1_setup2.mlx for an experiment. Experiment Manager uses the outputs of this function to call the
\Z Experiment1_setup1.mlx trainnNetwork function. For more information, see Configure Built-In Training Experiment.
#  Results
¥ resources Input
= params is a structure with fields from the Experiment Manager hyperparameter table.
Output
» trainingData is a datastore, numeric array, cell array of numeric arrays, or table used
to store the training data.
= layers is a layer graph that defines the neural network architecture.
= optionsis a trainingOptions object. v
| 4
Command Window ®
>> deepNetworkDesigner
Je>>
N
Details v
Select a file to view details
< >

24



MATLAB B>

Experiment Manager

<4\ Experiment Manager — X

op Joe ~ @B

E SR Layout Use Run

New

¥ | Duplicate v Parallel
FILE ENVIRONMENT PARALLEL RUN

]|

(4

Experin ) Hyperparameter_Tuning Hyperparameter_Tuning | Result4 Hyperparameter_Tuning | Result5 Hyperparameter_Tuning | Resulté Hyperparameter_Tuning | Result7
~ [F] TrainNetworkProject3
l v & Hyperparameter_Tuning

Description

Besult? I1Exper|m¢nting for robustness with below parameters
) Learning rate

Results 2) Solver

i 3) Neural networks archs

i+ Result

Result4 %

[E Result3 Hyperparameters

Result2 Strategy: | Bayesian Optimization v |

[ Result1
Name Range Type Transform
mySolver ["adam" "rmsprop" "sgdm"] categorical none
mylnitialLearnRate [1e-4 1] real none
myNetworkChoice ["a" "b"] categorical none

(€ Add|[{ Delete |

Bayesian Optimization Options

Name Value
Maximum time (in seconds) Inf
Maximum number of trials 30

Setup Function

| Experiment2_setup1 ‘

e NewHL=‘7 Edit |

Metrics
Standard training and validation metrics (such as accuracy, RMSE, and loss) are computed by default.

Custom Metrics



MATLAB EX
Importing Pretrained Network for Labelling Automation

Framework Interoperability bridges the gap between data science, engineering and production

[ TensorFlow }
[ PyTorch }
Al Modeling

Model design and _
@ wiig PyTorch importer ‘

Keras importer

Hardware F MATLAB® O N NX
—aa accelerated training . J \ J

N TensorFlow-
‘;I;‘ Interoperability R



https://www.mathworks.com/products/deep-learning.html#frm

MATI

Autoencoders

74
Z3
Encoder ) | =) Decoder
| Z, |
Input Images Image Encodings / Reconstructed Images

Latent Representation

28



MATLAB B

Variational Autoencoders for Image Re-Generation

Downsampling Upsampling / Image Generation
| l—1 I

Encoding
e
—

Fully
Connected Latent State MATLAB Example: Train Variational Autoencoder (VAE) to Generate Images 29



https://www.mathworks.com/help/deeplearning/ug/train-a-variational-autoencoder-vae-to-generate-images.html

MATLAB BEXlPO

Conditional Variational Autoencoders (CVAE)

Input
Condition (y)
)

Input State Predicted
[ ) ]‘[ Encoder ]‘ ‘[ Decoder ]‘[ State () ]

oga? l
Latent State ‘z’

Mean-squared loss
(x =)' (x—%)/N

(Y-

KL (Kullback—Leibler)
divergence loss
Dk (z| N(0,1))

30



Conditional Variational Autoencoders (CVAE)

Occupancy Map
Start
Goal

aadliath

Optimal Path
Generated by RRT* Input
Condition (y)
)
age

Input State
[ ) ]‘[ Encoder J‘

MATLAB EXPP

Imag
Encoding
log o2

—

Latent State ‘2’

Predicted
State ()

|

31



Conditional Variational Autoencoders (CVAE)

Occupancy Map
Start
Goal

ol Math

qdec fram an
Optimal Path
Generated by RRT* Input
)
age

Input State
[ ) ]‘[ Encoder J‘

MATLAB EXPP

Imag
Encoding
log o2

—

Latent State ‘2’

Predicted
State ()

|

32



MATLAB EXPP

Conditional Variational Autoencoders (CVAE)

Occupancy Map
Start
Goal

Optimal Path
Generated by RRT* Input
Condition (y)
)
age

Input State Predicted
[ ) ]‘[ Encoder J‘ ‘{ Decoder J‘[ State () ]

Imag
Encoding
log o2

——

Latent State ‘2’ 33



MATLAB EXPP

Conditional Variational Autoencoders (CVAE)

Occupancy Map
Start
Goal

Optimal Path
Generated by RRT* Input
Condition (y)
)
age

Input State Predicted
[ ) ]‘[ Encoder J‘ ‘{ Decoder J‘[ State () ]

Imag
Encoding
log o2

——

Latent State ‘2’ 34



| MATLA

Decoder Network for Generating Optimal States

% Predict states
stateslearned = predict{decoderMet, vertcat{condition, latentStates));

4 o )

o

a

o= % E— Decoder S

2]
o
(N : i
Occupancy Map Latent state
4X400

latentStates = dlarray(randn{latentStateSize, numSamplesPerSet), "CB");



More Examples
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MATLAB

Choose the Learnable Sampling Factor

10 10 10
a8 g a
n i W
o b o 6 g 6
I I 4+
al al a
E a4 E 4 E 4
- - =
2 2 2
0 0 0
0 5 10 0 5 10 0 5 10
X [meters] X [meters] X [meters]
samples
& start
# goal

Mix both learned samples and uniform samples in a certain proportion A, to bias the planner towards
the optimal solution while also guaranteeing to find a solution

37



RRT* with Uniform & Learned Sampling

Binary Occupancy Grid

Binary Occupancy Grid

Y [meters]
Y [meters]

1 2 3 4 5 G T ] 9
X [meters]

X [meters]

Uniform Sampling (A = 0) DL based Sampling (A =0.9)

10

MAT

38



MATI

Motion Planning with Deep Learning

RRT* Path

Uniform Sampling (A=0)

Binary Occupancy Grid Binary Occupancy Grid ) L _
Elapsed time 15 8.894554 seconds.

Elapsed time is 8.272638 seconds.

zolninfo zolninfo

[£| 1x1 struct with & fields + [£] 1x1 struct with & fields
Field Value Field Value
|~ IsPathFound 1 |+’ lsPathFound 1

FxitFlan 1 ExitFlag 1
1 MumModes 122 - - 1 MumMaodes 75

Mumlterations 182 g g Mumlterations 1008
| TreeData 3683 double T © | TreeData 227x3 double
| PathCosts 182xT double E. .E. | PathCosts 100xT double

- -
1] 2 4 6 8 10

X [meters]

X [meters]

* Animation runtime just reflects the ratio of treeData (as the animation was created during post-processing), whereas the elapsed time reflects the actual compute time 39



MATLAB EXPC

Accelerate Motion Planning with Deep Learning

Path Costs
20.5 :
" Success Rate —4— Learned sampling {lambda=0.5)
1 ! * 20 F —#— Uniform Sampling (lambda=0)
0.8 195
—#— Learned sampling (A=0.5)
o —#— Uniform Sampling (1=0) 19|
@ 06| £
o o
o Y185 1
S 04} . I3 I
=R o
(43} 18 | |
0.2 1 17.5¢ 1
'D- 1 1 1 1 1? - -
0 500 1000 1500 2000 2500
Samples 16.5 . . . i
500 1000 1500 2000 2500

Samples

- Faster Convergence to finding a valid path with Deep Learning based sampling
« For 500 samples, Uniform sampling can’t find a path for each map & each run
« Learned sampling path cost function much better than uniform sampling
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What is Reinforcement Learning?

«  What is Reinforcement
Learning?

— Type of machine learning
that trains an ‘agent’
through repeated
Interactions with an
environment

= How does it work?

— Through a trial & error
process that uses a reward
system to maximize
success

File Explorer Simulation
B Ves I a
Mechanics Explorer-wall

e x
dtect+al -9 e BmBa

W@l

42



Reinforcement Learning enables the use of Deep Learning for
Controls and Decision Making Applications

Robotics

Autonomous driving
Controls

A.I. Gameplay

43



A Practical Example of Reinforcement Learning
Training an Automated Parking Valet Controller

. , . OBSERVATIONS ACTION
Vehicle’s computer learns how to drive... [ AGENT }
(agent)

using sensor readings from LIDAR, cameras,...
(observations)

= that represent road conditions, vehicle position,...
(environment)

by generating steering, braking, throttle commands,...
(action) REWARD

to avoid collisions and lane deviation...
(reward).

ENVIRONMENT

The goal of Reinforcement learning is for the agent to find an optimal algorithm for
performing a task

44



Drawing Parallels- RL and Controls

/ AGENT \

— POLICY
OBSERVATION ACTION
O¢ A
-_ — POLICY
. Re = -x(0"Rx(1) - w0 Qu(n) | >( UPDATE
—
m— REINFORCEMENT
REFERENCE * 0O, CONTROLLER A LEARNING
m—gp:  PLANT
ERROR MANIPULATED ALGORITHM
VARIABLE

MEA SUREMENT K /
REWARD
R¢

\ ENVIRONMENT

Reinforcement Learning Toolbox™

MATLAB BEXlPO

45



Simulate trained agent for automatic parking

40

Vighichks Maode | SEARCH
Controllier Mode : MPC

36
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Train PPO Agent for
Automatic Parking Valet

Train a reinforcement learning agent

to park a car in an open parking

space.
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https://www.mathworks.com/help/reinforcement-learning/ug/train-ppo-agent-for-automatic-parking-valet.html

Simulink Model Bench for Parking Valet

[ Auto Parking Valet using MPC and RL |

Copyright 2019-2020 The MathWorks Inc.

States Controls
Search MPC Tracking Controller Speed (m/s)
—»
P Pose Park merge Vehicle Pose .
TargetPose P Steering (rad)
Vehicle Mode
— Ego Vehicle Model

Pose

Steer
P Pose Lidar Lidar

Lidar Sensor

Parking Lot Simulator

40

MATLAB |

Vehicle Mode : SEARCH
Controller Mode : MPC

36
]

35
| ]

[
&

o | =

90 100
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MATLA

Camera

Current pose —»

pose

found
Camera

goal

L True/False

——— [arget pose

Camera P
1. Depth

arameters
(dma.X')

2. Field of view (¢,i1, Prmax)

A spot in within range if

di < dmax
Pmin < Qi < Pmax

48



Lidar

> W

Current x pose

Current y pose

Current heading

50

>

g

>

botx

boty LIDARsensor  df—» \ector of lidar distances

theta

Lidar Parameters

Parking environment
No. of lidar readings
Maximum lidar distance
Geometry of the ego car
Geometry of obstacles

abkwnhE

MATLA

49



RL Controller

Observations:
« Position errors of the ego vehiglemaithenarget pose ACTION
« True heading angle 6, and the Agent/ Controller
» Lidar sensor readings.

Actions:
» Constant Speed: 2 m/s
« Steering angle: range between +/- 45 degrees in steps of 15 degrees

REWARD
Reward:

~(0.05X,7+0.047,7) 406,

r, = 2e +0.5¢" ¢ —0.0582 + 100f, — 508, oNMENT

f: (0 or 1) indicates whether the vehicle has parked

8t Indicates collision
& Steering angle

MATLAE
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Mapping different parking locations

Observations for different parking spot locations could be

coordinate transformations on vehicle pose

= 1-14: no transformation

" 1522 X=Y,Y=-X,0=0—z/2

" 2336 X=100—-X,Y=60-Y,0=0—-x
= 37-40: X=60-Y,Y =X, 0=0-3z/2

" 4152 X=100-X,Y=30-Y,0=0+n
" 5364: X=X, Y=Y—-28,0=0
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Choosing RL agent

Selection criteria:

1. Discrete or continuous spaces?
2. Complexity of algorithm

3. Algorithm-specific reasons

Discrete action space

Discrete observation space LQ—IearnlngJ e J e J

Discrete action space DON J PPO J
Continuous observation space

PPO has more stable updates but requires more training
TD3 is an improved, more complex version of DDPG
SAC is an improved, more complex version of DDPG that generates stochastic policies
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Built-in Reinforcement Learning Agents

Agents
Deep Q-Networks (DQN) Value-based
Q Learning Value-based
SARSA Value-based
Policy Gradient :
(REINFORCE) Policy-based
Deep Deterministic Policy ..
Gradient (DDPG) AGCIAGIlIE
Actor Critic Actor critic
(A2C & A3C as well)
Proximal Policy Optimization Actor critic

(PPO)

Twin Delayed Deep
Deterministic Policy Gradient Alele]ge]ile
(TD3)

Soft Actor Critic (SAC) Actor critic

Continuous/Discrete
Continuous/Discrete
Continuous/Discrete

Continuous/Discrete

Continuous/Discrete

Continuous/Discrete

Continuous/Discrete

Continuous/Discrete

Continuous/Discrete

Tables can only be used with discrete observations and actions

Observation Space

Discrete
Discrete
Discrete

Continuous/Discrete

Continuous

Continuous/Discrete

Continuous/Discrete

Continuous

Continuous
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Scaling environment- Unreal Cosimulation
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Unreal Engine — Large Parking Lot Scene
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Incorporating 3D Simulation

found P Found

| pose Camera

Speed (m/s) x

goal P Goal r___/’f—\___a
Confrols Vehicle Pose P _
Carmera i fo—:\ /@_]

b

P CurentPose
Steering (rad) R2D B aw

# Lidar

si

mulation 30 Vehicle with Ground Following.

Ego Vehicle Maodel pl Pose

Controller

P Steer

P Pose Lidar P Lidar
Parking Lot Simulator ? —_—
Lidar Sensor ¢

Simulation 3D Scene Configuration.




MATLAB EXP

Reinforcement Learning Environment

—(0.05X82+0.04Y82) —400 2

+0.5¢ ¢ —0.0552 + 100f, — 50g,

Reward Function

r,=2e

|
28 27 26

Yellow |35% each
Green 12%
Blue 12%

Red 6%

29

27 26 25 24 23 22

F ]
% g
o
= ~

-5 0 5 10 15

Vehicle Initial Pose during Training

RANNNANNNY
ANARNRNN
ANNANNNN

e e T ae 2937 | NA NA NA
1528 | X=41-X |V=-64.485-Y | §=0-m

1-14 X=X Y=Y+20.41 =0
38-46 X=41-X Y=-84.48-Y 0=0-n
Training Environment Coordinate Transformations on Vehicle Pose

57



120 —

100 —

80—

o
2
I

Eplsode Reward

-
=]
I

20—

Training the Agent

Episode Reward for rlAutoParkingValet3D with rIPPOAgent

¢ (R

Plot Options

["]Show Episode Q0

2000 3000 4000 5000 6000
Episode Number

[C] Show Last N Episodes

Episode Information
Episode Number
Episode Reward
Episode Steps
Episode Q0

Total Number of Steps

Average Results
Average Reward
Average Steps

‘Window Length for Averaging

Training Options
Hardware Resource for Actor
Hardware Resource for Critic
Learn Rate for Actor
Learn Rate for Critic
Maximum Number of Episodes

Maximum Steps per Episode

Final Results.

Training Stopped by

Training Progress ( 08-Sep-2020 17:32:31 )

10000
-37.0477
n
-6.4918

476994

-0.4319
49 52

200

cpu
cpu
0.0002
0.001
10000

200

Maximum number of episodes

Training Stopped at Value 10000
Elapsed Time 70700 sec

Episode Reward

-+ Average Reward

PPO Agent Options

MATLAB BEXlPO

SampleTime Ts
ExperienceHorizon 200
ClipFactor 0.2
EntropyLossWeight 0.01
MiniBatchSize 64
NumEpoch 3
AdvantageEstimateMethod gae
GAEFactor 0.95
DiscountFactor 0.998
Training Options
MaxEpisodes 10000
MaxStepsPerEpisode 200
ScoreAveragingWindowlLength | 200

Plots

training-progress

StopTrainingCriteria

AverageReward

Training from Scratch, Hyperparameters from Original Example

StopTrainingValue

inf

58



MATLAB BEXIPPO

Training the Agent cont.

00— Episode Reward for rlAutoParkingValet3D with IPPOAgent f2ininglRogreasi(§iCesepz2020011:26:13))

I, (-

Episode Information

Episode Number 10000

Episode Reward 46586

Episode Steps 65

Episode Q0 -7.8816

Total Number of Steps 439171

Average Results

Average Reward 338462
= Average Steps 46055
é Window Length for Averaging 200
E; Training Options. ; ?
Hardware Resource for Actor cpu é g
Hardware Resource for Critic cpu ? g
Leam Rate for Actor 0.0002
Maximum Number of Episodes 10000 z g 1 Y
Maximum Steps per Episode 200 ﬁ ﬁ .
Final Results.
Training Stopped by Maximum number of episodes
Training Stopped at Value 10000
Elapsed Time 65395 sec
5000
Episode Number
—_— Episode Reward
Plot Options
" Average Reward
[]Show Episode Q0 00

["] Show Last N Episodes

5 0 5 10 15 20 25 30 35 40 45 50

Training from Scratch, Changed Parked Vehicle Dimensions Testing the Agent
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Final Agent Training

200

150

Episode Reward
2

@
3

Episode Reward for rlAutoParkingValet3D with iPPOAgent

Plot Options

[ Show Episode Q0

1000

4000 5000 6000 7000 8000 9000
Episode Number

| Show Last N Episodes

Retraining Agent from Original Example

Training Progress ( 11-Sep-2020 11:09:53 )

Episode Information
Episode Number
Episode Reward
Episode Steps
Episode Q0

Total Number of Steps

Average Results
Average Reward
Average Steps

Window Length for Averaging

Training Options
Hardware Resource for Actor
Hardware Resource for Critic
Leam Rate for Actor
Leam Rate for Critic
Maximum Number of Episodes

Maximum Steps per Episode

Final Results
Training Stopped by
Training Stopped at Value

Elapsed Time

10000
945092
39
-18.5935

342001

842356
32755

200

cpu
0.0002
0.001
10000

200

Maximum number of episodes
10000

1.8835e+05 sec

Episode Reward

Average Reward

MATLAB EXPC

Retrained agent from
original example

Again used hatchback
dimensions for parked cars

Highest average reward

Appeared to park
successfully during test
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Final Example Demo 1

4\ MATLAB R2020b - prerelease use = X

LIVE EDITOR INSERT

= - H L Find Files |Aa Normal v L;J Ed Task » L,f |=] Section Break [/R @:>
New, Open Save |kl compare P GoTo ¥ Code —= Control ¥ &6 B E; Run and Advance Ru:xr Step Stop
v > ¥ &4 Print (4 Find ¥ & Refactor v . Section E} Run to End W
FILE NAVIGATE TEXT CODE SECTION RUN B
s Hal@ » C: » Users » tgeorge » Documents » MATLAB » AutoParkProject » v p
Current Folder ® Workspace ®
Name *vT AutoValet3DM.m _ ex53070119 (1).mix AutomaticParkingValet3DE <) arams3D.m createMPCForParking3D.m ParkingLot3D.m + Name - Value
o slprj e | |®] actionl... 1x7 riFinit. ~

actualReferencePath.fig i i i i i x1 rlStoc.
. sy [Traln PPO Agent for Automatic Parking Valet in 3D Environment ] i:ﬁ:ﬁim ;mfy'e,

[ agent_0303_2228_PPO_discrete.mat This example demonstrates the design of a hybrid controller for an automatic search and parking task. You will learn how to combine a Model Predictive Controlier %! |[®lactoro... 7x7 riRepr..
£t agent_0304_1709_PPO_discrete.mat with a Reinforcement Learning Agent to perform a parking maneuver. L Ad [1.000.1,...
[ agent_new.mat 45 [|®)agent 1x1 rlPPO.
[l agent_new2.mat . |®)agent.. 7x7 rlPPO..
[t agent_new3.mat Overview [6.1232¢-...
=8 ﬂge":-’e:'af"i""’: The automatic parking algorithm in this example executes a series of maneuvers while simultaneously sensing and avoiding obstacles in tight spaces. It switches ":J"“mpa’---
1 agent_retrain3.ma ) ) . e 1
« Ag kingValetWith3DSimulation_sfun.mexws4 between an adaptive MPC controller and an RL Agent to complete the parking maneuver. The MPC controller moves the vehicle at a constant speed along a 20044
5 AutomaticParkingValet3DExample.mlx reference path while an algorithm searches for an empty parking spot. When a spot is found, the RL Agent takes over and executes a pre-trained parking maneuver. [1,00,0,1,...
] autoParkingValetParams3D.asv Prior knowledge of the environment (the parking lot) including the locations of the empty spots and parked vehicles is available to the controllers. {1 center... 1.3430
] autoParkingValetParams3D.m | @) critic 1x1 riValu.
) autoParkingValetResetFcn3D.m . @ criticN... 8xT Layer
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ﬂ AutoValet3DM.m The parking lot is represented by the ParkingLot class, which stores information on the ego vehicle, empty parking spots and static obstacles (parked cars). Each }060%2":)'0]
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72 checkEgoCollided.m parking spot has a unique index number and an indicator light that is either green (free) or red (occupied). Parked vehicles are represented in black. .0
7 <
*) createMPCForParking3D.m The following sensor modules provide useful information to the parking algorithm: jx_z_”
5 ex53070119_modif.mix 0:0,0)
7‘;1 ex53070119.mlIx 1. A camera mounted on the ego vehicle with a field of view (range 120 deg, depth 10 m) represented by the area shaded in green. As the vehicle moves forward, j Z:ST"B': {206152551
Ejl g::ﬁ:;‘?’r?:e"“engthsm the camera module senses the indicator lights that fall within the field of view and determines whether the spots are free or occupied. For simplicity, this is @] env x1 Sm;ul 3
f’_J helperUpdatePolyline.m implemented using geometrical relationships between the spot locations and the vehicle pose. - 32
i leftTurnPath.mat 2. Alidar sensor module that determines proximity to obstacles through a set of 12 distances from the center of the vehicle. L lidarTol 0.5000
0 |®|logsout 7x7 Datas.
[ leftTurnReduced.mat
= lidarSegmentintersections.m . y . L |®) map 1x1 Parki.
@) Ubars . Specify a sample time T, for the controllers and a simulation time 7', [t maxLid... 6
Sisonm =l mdl 'rlAutoPar...
# LoggedRewardSignals.mldatx @} mpcobj 2x3 mpc
May19_MeetingNotes.txt 1 i Osly fjru‘«cl T
@ NonVehicleObstacleDimConversions.xlsx 2 Tf = 45; ::j nObs 16
[ oneleftPath.mat = |Hd numse... 12
) parkinglotm Create a reference path for the ego vehicle to follow in the parking lot. o observm 1x1 riN
®) parkingLot3D.m E obsMat  56x5 dou..
& ParkingLotEnviron.jpg 3 Xref = getRefTraj(Ts,Tf); tpTrack... 10
9] ParkingLotSimulator.m | speed... 2
2] parkingVehicleStateFcnRRT.m Create a ParkingLot3D object with a free spot at location 32. L steerM... 0.7854
”‘_] parkingVehicleStateJacobianFcnRRT.m [-11tBounds [-InfInf]
& parkingWithUnreal PNG [iiterrTol 0.1745
[ parkpath.mat Command Window @ H1r 45
;ﬂ rect2segs.m 1] tout 474x1 do..
#) RefPath3DParkm 2 Prerelease License -- for engineering feedback and testing @i trainO... 77 rlTrai
Details N purposes only. Not for sale. ] trainTB. [-6.2832..
Ei trainX... [-1.2000,
S ol il Pled {11 trainYB... [-41.3400....
3 - o 00, OX successiu y insta e :DTS 0.1000
Select a file to view details fx >> _u u [0;0]
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Final Example Demo 2

4\ MATLAB R2020b - prerelease use

LIVE EDITOR VIEW
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o OO = ; I M = = D; - S
New Open Save L Compare BAGoTo = ., B 1 U Codelist= CotE b @ R IMETRTEE S s G
- = ~ S Print  Find ~ = IE ¥ Refactor Section E} Run to End b
FILE NAVIGATE TEXT CODE SECTION RUN -
<9 EHala » C: » Users » tgeorge » Documents b MATLAB » AutoParkProject » - p
Current Folder ® b Workspace ®
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i s sipr) e i - . X i i . * | zalf| @ actionl... 1x7 riFinit.. -
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£L] agent_0304.1709_PPO_discrete.mat with a Reinforcement Leaming Agent to perform a parking maneuver. —|Had 10001,
L1 agent_new.mat |®agent  7x7 riPPO...
[t agent_new2.mat . ®|agent.. 1x1 rlPPO..
£ agent new3.mat Overview Hsd [6.1232e-...
o agen:,re:ramima: The automatic parking algorithm in this example executes a series of maneuvers while simultaneously sensing and avoiding obstacles in tight spaces. It switches iblk ‘riAutoPar...
11 agent_retrain3.mal te 10
ﬂ A?.;tomatedParkmgVa\elWllhBDS\mulatinn sfun.mexw64 between an adaptive MPC controller and an RL Agent to complete the parking maneuver. The MPC controller moves the vehicle at a constant speed along a ﬂi:::: 2.0044
5 AutomaticParkingValet3DExample.mix reference path while an algorithm searches for an empty parking spot. When a spot is found, the RL Agent takes over and executes a pre-trained parking maneuver. HHcd [1,0,0:0,1,...
_] autoParkingValetParams3D.asv Prior knowledge of the environment (the parking lot) including the locations of the empty spots and parked vehicles is available to the controllers. Lijcenter... 1.3430
‘_1 autoParkingValetParams3D.m & critic 1x7 rivalu,
1] autoParkingValetResetFen3D.m . |®)] criticN... 87 Layer
5 AutoValet3D.mix Park'"g Lot |®| criticO... 1x7 riRepr.
F) . . . . E '
ej AutoValet3DM.m The parking lot is represented by the ParkingLot class, which stores information on the ego vehicle, empty parking spots and static obstacles (parked cars). Each QE“ %060%%5301
Y s i . iy T . ) ) H discret... [-0.7854,-..
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[ |®logsout 1x7 Datas...
i leftTurnReduced.mat © Tx7 P
’j lidarSegmentintersections.m " " i " " a P B ki
&) UDARSensor.m Specify a sample time T for the controllers and a simulation time 7', 1 maxLid... 6
i o mdl 'rlAutoPar...
# LoggedRewardSignals.mlidatx _kI’JJ: cobj ;xjur: :'
= May19_MeetingNotes.txt 1 Ts = 8.1; ;n.:;t ) 7 P
B NonVehicleObstacleDimConversions.xlsx 2 Tf = 45; TjnObs 16
[ oneleftPathmat H numse... 12
) parkinglot.m Create a reference path for the ego vehicle to follow in the parking lot. ] obsem'" 17 riNe
=] ‘.
) ParkinglLot3D.m HH obsMat  56x5 dou.
& ParkingLotEnvironjpg 3 Xref = getRefTraj(Ts,Tf); H pTrack.. 10
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Design reinforcement learning agents for controls

DDPG Agent DDPG Agent Neural Network

;ev T;\s@)\l[:;wl&l&mgrtivon QHilp D:l - ; - :’:.M rutse Control (ACC 7 | ‘Steering an‘gle (deg) | | 7 ?hpw
safe_distance, relative distance | A I 74. D; [ _ TFG: -'-eye,
A—— 1 ol TE o — | || TR
““““““ - NS N 0.4 .F
...... - . 3 yreg
Tq's&ver. TR&I@
L ” $ Fog
ety T aeq, fr*?e’m
RRRRR gy ) g b i %m“ayer
| ?r&;,i”
e "ol Time (s) *S
":us ZS .R&J"@s ;
i bm moro“‘bu;
Train Deep Deterministic Train DDPG Agent for Path Imitate MPC Controller for Lane
Policy Gradient (DDPG) Agent Following Control Keep Assist using a Neural
for Adaptive Cruise Control Reinforcement Learning Toolbox™ Network
Reinforcement Learning Toolbox™ Reinforcement Learning Toolbox™

Model Predictive Control Toolbox™

63


https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-for-adaptive-cruise-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html
https://www.mathworks.com/help/reinforcement-learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html

MATLAB EXPC

Deploy to Any Processor with Best-in-class Performance

<A B

NVIDIA.

Library |

Free

Al models in MATLAB and Simulink can be deployed on embedded devices, edge devices,
enterprise systems, the cloud, or the desktop
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Al deployed on Embedded Devices

UU-Alexnet

= Need code that takes advantage
of:

— NVIDIA® CUDA libraries, including
cuDNN and TensorRT

— Intel® Math Kernel Library for Deep
Neural Networks (MKL-DNN) for
Intel processors

— ARM® Compute library for ARM
processors

ARG T —

Intel Xeon Desktop PC

Raspberry Pi Board
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Technology Showcase Demo Booths

Virtual World and Algorithm Development for
Automated Driving

Robotics and

HIL Testing for an ADAS ECU in a Virtual

Autonomous Environment
systems

Service-Oriented Architectures (SOA) for Designing
and Deployment in Automated Driving

Surrogate Al Models for CAE Applications

Enabling Industry 4.0

Artificial
Intelligence

Hardware Deployment of Al Models

Create virtual world (scene/scenarios) from specifications and recorded data
Interoperate with ASAM standards and build road networks from HD map services
Develop algorithms for perception, sensor fusion, planning and control systems
Test algorithms with a virtual testing environment

Establish interfaces for ECU under test
Generate code and deploy subcomponents on HIL machines
Address synchronization in a closed loop setup with multiple machines

Architect services for adaptive cruise control using System Composer
Design and simulate algorithm behavior for vehicle actuation (brakes, acceleration)

Use automatic code generation and deployment as service (Adaptive AUTOSAR, ROS 2, DDS, etc.)

Build a design of experiments (DOE) table for component design
Create surrogate Al models from FEA/CFD simulations
Run multiobjective design optimization studies using Al models

Secure data exchange with smart industrial plant sensors and servers
Develop predictive maintenance, smart manufacturing, and SCADA applications

Low-code aspect of Al workflow
Scope of hardware selection within the auto-code generation workflow
Al models to target hardware deployment

MATLAB E

—
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Thank you

Dr Rishu Gupta, MathWorks Peeyush Pankaj, MathWorks
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