Using Physical Modeling Tools to Design Power Optimized Aircraft

Rick Hyde

Product Developer, Physical Modelling Tools

The MathWorks Ltd, Cambridge, UK

Rick.Hyde@mathworks.co.uk

© 2008 The MathWorks Limited

MathWorks
Aerospace and Defence Conference '08

Key Points

- Testing different actuator designs in one environment saves time and encourages innovation
- 2. Optimizing systems with respect to design requirements leads to optimal design choices
- 3. Simulating at different levels of fidelity is required to see effects of design implementation

Agenda

Trends in the aerospace industry

10 min

- Industry trends
- Strategies for improvement
- How simulation can help
- Example: Flight Actuation System

15 min

- Model explanation
- Tradeoff study
- System optimization
- Assess implementation effects
- Conclusions

Industry Trends

- System needs
 - Aircraft must produce less pollution
 - Aircraft must be more efficient
- Example goals
 - Clean Sky (for year 2020)
 - 50% reduction of CO₂ emissions
 - 80% reduction of nitrous oxide emissions
 - Power Optimized Aircraft (POA)
 - 25% cut in peak non-propulsive power
 - 5% reduction in fuel consumption
- Strategies include aircraft-level optimization, technology

"With 5-6℃ warming ... existing models ... estimate an average 5-10% loss in global GDP."

Head of the Government Economic Service UK, 2006

Research project, EU and industry

Strategies for Improved Aircraft Design

- Technology: Electrical actuation
 - Fewer losses than hydraulic actuation
 - Only needs to be turned on when in use
 - Tend to be more reliable, cleaner, and safer
- Aircraft-level optimization
 - Consolidation of power electronics
 - Localize hydraulic actuation

Boeing 787 Electrical Systems

Brakes
Ice protection
Engine start
Environmental controls
Electrohydraulic pumps

Airbus 380 Electrical Systems

Primary flight control actuators
Thrust reverser actuation
Horizontal stabilizer backup

Simulation can help with each of these strategies

How Simulation Can Help

- 1. Tradeoff studies to test electrical and hydraulic systems
 - Determine actuator requirements
 - Test hydraulic and electrical actuator designs
- 2. System-level models
 - Must be done at aircraft level to optimize architecture
 - Few key parameters and quick simulation
- 3. Simulating at different levels of fidelity
 - Need to easily add fidelity to see impacts of implementation
 - Reuse work done at system level (Model-Based Design)

Example: Aileron Actuation System

- Simulation goals
 - 1. Determine requirements for actuation system
 - 2. Test performance with electrical or hydraulic actuation
 - 3. Optimize the actuation system
 - 4. Assess effects of system implementation

Determining Actuation Requirements

Model:

Problem: Determine the requirements for an aircraft aileron actuator

Solution: Use SimMechanics™ to model the aileron and Simscape™ to model an ideal actuator

MathWorks

Aerospace and Defence Conference '08

Test Electrical and Hydraulic Designs

Problem: Test different actuator designs in the system

Solution: Use SimHydraulics® and SimElectronics™ to model the actuators, and configurable subsystems to exchange them

MathWorks
Aerospace and Defence Conference '08

Actuator System-Level Designs

Hydrostatic transmission

- Variable-displacement pump
- Double-acting hydraulic cylinder
- Replenishing valves
- Pressure-relief valves
- Charge pump
- Speed controller

Electromechanical system

- DC Motor
- Worm gear
- Current sensor and current controller
- Hall effect sensor and speed controller
- PWM and H-bridge driver

MathWorks

Optimize System Performance

Model:

Angle (deg)

(be)

(be)

(color)

(deg)

(de

<u>Problem</u>: Optimize the speed controller to meet system requirements

Solution: Use <u>Simulink® Response</u>
Optimization™ to tune the controller parameters

MathWorks

Aerospace and Defence Conference '08

Assess Implementation Effects

Problem: Assess the effects of design implementation on system performance

Solution: Use SimElectronics to add a PWM signal and analog circuit implementation

MathWorks

Aerospace and Defence Conference '08

Conclusion

- Testing different actuator designs in one environment saves time and encourages innovation
- 2. Optimizing systems with respect to design requirements leads to optimal design choices
- 3. Simulating at different levels of fidelity is required to see effects of design implementation

MathWorks™ Products Used

- Simscape
 - Multidomain physical systems

- SimMechanics
 - 3-D mechanical systems

- SimHydraulics
 - Hydraulic (fluid power) systems

- SimElectronics (new)
 - Electronic and electromechanical systems
- Simulink Response Optimization

MathWorks