

Supervisors – **Professor Martin Ebert** and **Dr Pejman Rowshan Farzad**

Trial Chairperson – **Professor Jim Denham**Trial Contact – **Mrs Allison Steigler**

Breakdown

- 1) Introduction
 - ⇒ Cancer and radiotherapy basics
 - ⇒ Research problem and aims
- 2) Aim 1: Locating Regions where Dose is Correlated with Failure
 - ⇒ Using MATLAB for 3D visualisation
 - ⇒ Using MATLAB for locating significant regions
- 3) Aim 2: Classification Modelling
 - ⇒ What is classification modelling?
 - ⇒ Live demo of MATLAB Classification Learner App
- 4) Potential Impact of Research
 - ⇒ How MATLAB helps impact radiotherapy through this project

► What is cancer?

⇒ Cancer results from genetic mutations that occur naturally or result from external influences.

NORMAL

Nucleotides
(adenine, guarine, cytosine, thymine)

DNA LADDER

⇒ Particular mutations stimulate out-of-control cell growth of cells without normal functionality.

⇒ Groups of these cells are what we call tumours, and can destroy healthy function in many crucial organs.

- **L** Is cancer prominent? How's it treated?
- ⇒ Cancer is the leading cause of death in Australia, with 1 in 2 men and 1 in 3 women diagnosed by the age of 85
- ⇒ Prostate cancer is the most commonly diagnosed cancer in Australia, with 1 in 8 men diagnosed within their lifetime

Prostate cancer is typically treated with a combination of the following modalities:

What's External Beam Radiotherapy (EBRT)?

EBRT: radiation (high energy photons) externally delivered to tumour via linear accelerator.

'The Goal': to maximise dose (energy deposition) to tumour and minimise dose to healthy tissues.

■ What's the EBRT process?

Prostate cancer external beam radiotherapy (EBRT) involves three major stages:

- 1) Produce a high-quality 3D image of the treatment region.
- 2) Produce a treatment plan, including a 3D radiation dose distribution.
- 3) Accurately deliver the planned radiation dose via linear accelerator.

Research Problem and Aims

The project addresses a major unresolved issue in prostate EBRT:

- ⇒ The distribution of cancer around the prostate is difficult to locate due to potential microscopic disease spread.
- ⇒ Therefore, there could be regions that are under-dosed.

Witte, M. G. *et al.* Relating Dose Outside the Prostate With Freedom From Failure in the Dutch Trial 68 Gy vs. 78 Gy. *Int. J. Radiat. Oncol. Biol. Phys.* **77**, 131–138 (2010).

Project aims:

- 1) To find regions where dose variation is correlated with treatment failure.
- 2) To produce a classification model capable of predicting failure based on a subject dose distributions.

RADAR trial subjects

x 684

► What's a prostate EBRT 3D dose distribution?

→ 3D Visualisation on MATLAB?

→ 3D Visualisation on MATLAB?

ANALYZE data on any platform

Load, save, make, reslice, view (and edit) both NIfTI and

► Analysis: Dose-difference testing

Local anatomy

Rectum **Prostate**

Bladder Pelvic Femurs bones Rectum **Prostate**

'Multiple comparisons' dose-difference test

p < 0.01 threshold dose-difference map

'Locally normalised'

dose-difference map

► Analysis: How did MATLAB help?

The entire analysis was performed on MATLAB

- ⇒ All dose distributions are 3D matrices
- ⇒ MATLAB's matrix manipulation was very helpful
- ⇒ Using the 'vec2mat' function from the Communications System Toolbox

► Analysis: How did MATLAB help?

The analysis involved a lot of data crunching!

- ⇒ Each dose distribution is about 2.3 Mb
- ⇒ The analysis includes over 680 distributions

Parallel Computing Toolbox allows running multiple core's at once

- ⇒ Reduces processing time, very helpful!
- ⇒ Especially 'for loops', frequently used in code

What is 'machine learning' based classification?

A number of machine learning algorithms are used for classification:

- ⇒ K-nearest neighbour
- ⇒ Support vector machine
- ⇒ Decision tree

Two major steps:

- 1) Use an algorithm to 'train' a model using a data set made up of classes (subgroups).
- 2) Classifying external data into a class of the training set.

What is 'machine learning' based classification?

What is 'machine learning' based classification?

How do we test our model without test data? Can use cross-validation...

■ What is 'machine learning' based classification?

Testing the model...

Three basic statistics help us test the model's per

Accuracy:

$$Acc = \frac{\# \ correctly \ classified}{total \ number}$$

E.g. 10 cats, 10 dogs 7 cats and 9 dogs correctly classified

$$\Rightarrow Acc = \frac{7+9}{20} = 80\%$$

Sensitivity:

$$Sen = \frac{\# \ correctly \ classifie}{total \ number \ in}$$

$$\Rightarrow Sen = \frac{9}{10} = 90\%$$

Specificity:

$$Spe = \frac{\# correctly \ classifie}{total \ number \ in}$$

$$\Rightarrow Spe = \frac{7}{10} = 70\%$$

E.g. Classifying RADAR data according to number of beams:

■ Benefits of the MATLAB Classification Learner App

Benefits:

- ⇒ Running multiple machine learning algorithms simultaneously is extremely powerful
- ⇒ Implement cross validation easily
- ⇒ Activate PCA easily
- ⇒ Generate performance statistics easily

Goal: to build a model capable of predicting treatment failure in a patient based on their planned dose distribution

- ⇒ Classified the two groups:
 - 197 died within 6.5 years
 - 487 death free
- \Rightarrow 1 in 8 sampled data
- ⇒ 15-fold cross validation

1.1 Tree Last change: Complex Tree	Accuracy: 68.4% 10752/10752 features
1.2 🏠 Tree Last change: Medium Tree	Accuracy: 70,8% 10752/10752 features
1.3 🏠 Tree Last change: Simple Tree	Accuracy: 71.9% 10752/10752 features
1.4 🖒 Linear Discriminant Last change: Linear Discriminant	Accuracy: 67.4% 10752/10752 features
1.5 🖒 Quadratic Discriminant Last change: Quadratic Discriminant	Accuracy: 67.4% 10752/10752 features
1.6 ☆ Logistic Regression Last change: Logistic Regression	Accuracy: 48,4% 10752/10752 features
la de la companya de	
1.7 🖒 SVM Last change: Linear SVM	Accuracy: 72.4% 10752/10752 features
Last change: Linear SVM 1.8 SVM	10752/10752 features Accuracy: 70,5%
Last change: Linear SVM 1.8 SVM Last change: Quadratic SVM 1.9 SVM	10752/10752 features Accuracy: 70.5% 10752/10752 features Accuracy: 69,2%
Last change: Linear SVM 1.8 SVM Last change: Quadratic SVM 1.9 SVM Last change: Cubic SVM 1.10 SVM	10752/10752 features Accuracy: 70.5% 10752/10752 features Accuracy: 69.2% 10752/10752 features Accuracy: 70.6%

1.13 🏠 Last change:	KNN Fine KNN	Accuracy: 65,8% 10752/10752 features
1.14 🏠 Last change:	KNN Medium KNN	Accuracy: 71,3% 10752/10752 features
1.15 🏠 Last change:	KNN Coarse KNN	Accuracy: 71,9% 10752/10752 features
1.16 🏠 Last change:	KNN Cosine KNN	Accuracy: 71.1% 10752/10752 features
1.17 🏠 Last change:	KNN Cubic KNN	Accuracy: 69,7% 10752/10752 features
1.18 🏠 Last change:	KNN Weighted KNN	Accuracy: 70.5% 10752/10752 features
	Ensemble Boosted Trees	Accuracy: 70.0% 10752/10752 features
	Ensemble Bagged Trees	Accuracy: 72,1% 10752/10752 features
	Ensemble Subspace Discriminant	Accuracy: 60.5% 10752/10752 features
	Ensemble Subspace KNN	Accuracy: 63,9% 10752/10752 features
	Ensemble RUSBoosted Trees	Accuracy: 66.5% 10752/10752 features

Potential Impact of Research

Impact of these analyses:

- 1) Identifying anatomical regions prone to under-dosing is helpful because:
 - ⇒ Valuable for clinicians identifying the optimal treatment region
 - ⇒ It helps determine where and why the treatment is failing
 - ⇒ Correcting this can directly improve patient outcomes!
- 2) A robust model capable of predicting treatment failure is helpful because:
 - ⇒ It can help us determine particular geometric dose patterns associated with treatment failure
 - ⇒ Predicting treatment failure before treatment can indicate need for replanning and improvement

Questions...

