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How big is big?
What does “Big Data” even mean?

“Big data is a term for data sets that are so large or 

complex that traditional data processing 

applications are inadequate to deal with them.”

Wikipedia
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So, what’s the (big) problem?

 Traditional tools and approaches won’t work

– Getting the data is hard; processing it is even harder

– Need to learn new tools and new coding styles

– Have to rewrite algorithms, often at a lower level of abstraction

 Quality of your results can be impacted

– e.g., by being forced to work on a subset of your data
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Big Data workflow

PROCESS AND ANALYZE

Adapt traditional processing tools or 

learn new tools to work with Big Data

ACCESS

More data and collections

of files than fit in memory

SCALE

To Big Data systems 

like Hadoop / Spark
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Big solutions

Wouldn’t it be nice if you could:

 Easily access data however it is stored

 Prototype algorithms quickly using small data sets

 Scale up to big data sets running on large clusters

 Using the same intuitive MATLAB syntax you are used to
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tall arrays

 For data that doesn’t fit into memory

 Lots of observations (hence “tall”)

 Looks like a normal MATLAB array

– Supports numeric types, tables, datetimes, strings, etc…

– Supports basic math, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support 

(clustering, classification, etc.)
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Cluster of

Machines

Memory

Single

Machine

Memory

tall arrays

 Data is in one or more files

 Typically tabular data

 Files stacked vertically

 Data doesn’t fit into memory 

(even cluster memory)



8

Cluster of

Machines

Memory

Single

Machine

Memory

tall arrays

 Automatically breaks data up into 

small “chunks” that fit in memory
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tall array
Single

Machine

Memory

tall arrays

 “Chunk” processing is handled 

automatically

 Processing code for tall arrays is 

the same as ordinary arrays

Single

Machine

MemoryProcess
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tall array

Cluster of

Machines

Memory

Single

Machine

Memory

tall arrays

 With Parallel Computing Toolbox, 

process several “chunks” at once

 Can scale up to clusters with 

MATLAB Distributed Computing 

Server

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess
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Big Data Workflow With Tall Data Types

MATLAB programming for data that does not fit into memory

Access Data

• Text

• Spreadsheet (Excel)

• Database (SQL)

• Custom Reader

Datastores for 

common types of 

structured data

Machine Learning

• Linear Model

• Logistic Regression

• Discriminant analysis

• K-means

• PCA

• Random data sampling

• Summary statistics

• SVM, Naïve Bayes, 

Bagged Regression Trees 

Classification

• Lasso Regression

Key statistics and 

machine learning 

algorithms

Exploration &

Pre-processing

• Numeric functions

• Basic stats reductions

• Date/Time capabilities

• Categorical

• String processing

• Table wrangling

• Missing Data handling 

• Summary visualizations:

• Histogram/histogram2

• Kernel density plot

• Bin-scatter

Hundreds of pre-built 

functions

Tall Data Types

• table

• cell

• double

• numeric

• cellstr

• datetime

• Categorical

• timetable

Tall versions of 

commonly used 

MATLAB data types
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Example: Working with Big Data in MATLAB

 Objective: Create a model to predict the cost of a taxi ride in New York City

 Inputs:

– Monthly taxi ride log files

– The local data set is small (~2 MB)

– The full data set is big (~25 GB)

 Approach:

– Preprocess and explore data

– Develop and validate predictive model (linear fit)

 Work with subset of data for prototyping

 Scale to full data set on HDFS
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Example: Prototyping
Preview Data

>> ds = datastore('taxidataNYC_1_2015.csv');
>> preview(ds)

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_long
________    ____________________    _____________________    _______________    _____________    ___________

2           2015-01-09 02:53:26     2015-01-09 03:01:26      1                   1.43            -74.004
2           2015-01-25 05:29:56     2015-01-25 06:03:40      1                  10.74            -73.998
1           2015-01-11 10:41:57     2015-01-11 10:49:26      1                    1.6            -73.986
1           2015-01-05 13:00:31     2015-01-05 13:03:45      2                    0.5            -74.007
1           2015-01-14 11:47:23     2015-01-14 11:51:02      1                    0.5            -73.997
2           2015-01-17 22:49:44     2015-01-17 22:57:01      2                    1.3            -73.979
2           2015-01-19 06:01:36     2015-01-19 06:34:16      1                  20.32            -73.975
2           2015-01-26 15:17:21     2015-01-26 16:03:06      5                   4.48            -73.966
2           2015-01-25 04:19:55     2015-01-25 04:24:49      5                   1.28            -73.954
2           2015-01-31 18:27:28     2015-01-31 18:31:43      5                   1.24            -73.969

Description
 Location: New York City
 Date(s): (Partial) January 2015
 Data size: “small data” 13,693 rows / ~2 MB
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Example: Prototyping
Create a Tall Array

>> tt = tall(ds)
tt =

M×19 tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_long
________    ____________________    _____________________    _______________    _____________    ___________

2           2015-01-09 02:53:26     2015-01-09 03:01:26      1                   1.43            -74.004
2           2015-01-25 05:29:56     2015-01-25 06:03:40      1                  10.74            -73.998
1           2015-01-11 10:41:57     2015-01-11 10:49:26      1                    1.6            -73.986
1           2015-01-05 13:00:31     2015-01-05 13:03:45      2                    0.5            -74.007
1           2015-01-14 11:47:23     2015-01-14 11:51:02      1                    0.5            -73.997
2           2015-01-17 22:49:44     2015-01-17 22:57:01      2                    1.3            -73.979
2           2015-01-19 06:01:36     2015-01-19 06:34:16      1                  20.32            -73.975
2           2015-01-26 15:17:21     2015-01-26 16:03:06      5                   4.48            -73.966
:           :                        :                       :                  :                :
:           :                        :                       :                  :                : 

Input data is tabular –

result is a tall table

Number of rows is 

unknown until all the 

data has been read

Only the first few 

rows are displayed
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Example: Prototyping
Calling Functions with a Tall Array

 Most results are evaluated only 

when explicitly requested
(e.g., gather)

 MATLAB automatically 

optimizes queued calculations 

to minimize the number of 

passes through the data

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

mnTrip =

tall double 

?

Preview deferred. Learn more.

% Execute commands and gather results into workspace
mn = gather(mnTrip)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4 sec
Evaluation completed in 5 sec

mn =

15.2648

Once the tall table is created, can process much like an ordinary table
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Example: Prototyping
Preprocess, clean, and explore data

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime - tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short

tt.trip_minutes >= 60 * 12 | ...  % unfeasibly long
tt.trip_distance <= 1 | ... % really short
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.total_amount < 0 | ... % negative fares?!
tt.total_amount > 10000;           % unfeasibly large fares

tt(ignore, :) = [];

% Explore data
figure
histogram(tt.trip_distance,'BinLimits',[0 30])
title('Trip Distance')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 6 sec
- Pass 2 of 2: Completed in 6 sec
Evaluation completed in 12 sec
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Example: Prototyping
Fit predictive model

% Fit predictive model
model = fitlm(ttTrain,'fare_amount ~ 1 + hr_of_day + trip_distance*trip_minutes')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 7 sec
Evaluation completed in 8 sec

model = 

Compact linear regression model:
fare_amount ~ 1 + hr_of_day + trip_distance*trip_minutes

Estimated Coefficients:
Estimate  SE    tStat pValue

(Intercept)                        2.8167      0.038002      74.12             0
trip_distance 2.2207      0.006166     360.16             0
hr_of_day 0.001222     0.0019124    0.63901       0.52282
trip_minutes 0.24528      0.001793     136.79             0
trip_distance:trip_minutes -0.00053185    0.00012339    -4.3102    1.6336e-05

Number of observations: 58793, Error degrees of freedom: 58788
Root Mean Squared Error: 3.06
R-squared: 0.927,  Adjusted R-Squared 0.927
F-statistic vs. constant model: 1.86e+05, p-value = 0
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Example: Prototyping
Predict and validate model

% Predict and validate
yPred = predict(model,ttValidation);
residuals = yPred - ttValidation.fare_amount;
figure
histogram(residuals,'Normalization','pdf','BinLimits',[-50 50])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 8 sec
- Pass 2 of 2: Completed in 5 sec
Evaluation completed in 15 sec
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Scale to the Entire Data Set

Description
 Location: New York City
 Date(s): All of 2015
 Data size: “Big Data” 150,000,000 rows / ~25 GB
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Example: “small data” processing vs. Big Data processing 

% Access the data
ds = datastore('taxidataNYC_1_2015.csv');
tt = tall(ds);

“small data” processing

% Access the data
ds = datastore('taxiData\*.csv');
tt = tall(ds);

Big Data processing

% Access the data
ds = datastore('taxidataNYC_1_2015.csv');
tt = tall(ds);

% Access the data
ds = datastore('taxiData\*.csv');
tt = tall(ds);

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short

tt.trip_minutes >= 60 * 12 | ...  % unfeasibly long
tt.trip_distance <= 1 | ... % really short
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.total_amount < 0 | ... % negative fares?!
tt.total_amount > 10000;           % unfeasibly large fares

tt(ignore, :) = [];

% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short

tt.trip_minutes >= 60 * 12 | ...  % unfeasibly long
tt.trip_distance <= 1 | ... % really short
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.total_amount < 0 | ... % negative fares?!
tt.total_amount > 10000;           % unfeasibly large fares

tt(ignore, :) = [];
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Example: Running on Spark + Hadoop

% Hadoop/Spark Cluster 
numWorkers = 16; 

setenv('HADOOP_HOME', '/dev_env/cluster/hadoop');
setenv('SPARK_HOME', '/dev_env/cluster/spark');

cluster = parallel.cluster.Hadoop;
cluster.SparkProperties('spark.executor.instances') = num2str(numWorkers);
mr = mapreducer(cluster);

% Access the data
ds = datastore('hdfs://hadoop01:54310/datasets/taxiData/*.csv');
tt = tall(ds);



22

Demo: Running on Spark
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Summary for tall arrays

Process out-of-memory data on 

your Desktop to explore, 

analyze, gain insights and to 

develop analytics 

MATLAB Distributed Computing Server, 

Spark+Hadoop

Local disk,

Shared folders,

Databases
or Spark + Hadoop (HDFS), 

for large scale analysis

Use Parallel Computing 

Toolbox for increased 

performance

Run on Compute Clusters
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Big Data capabilities in MATLAB

PROCESS AND ANALYZE

Purpose-built capabilities for domain 

experts to work with big data locally

ACCESS

Access data and collections of files

that do not fit in memory

SCALE

Scale to compute clusters and 

Hadoop/Spark for data stored in HDFS

Tall Arrays
• Math, Stats, Machine Learning on Spark

Distributed Arrays
• Matrix Math on Compute Clusters

MDCS for EC2
• Cloud-based Compute Cluster

MapReduce

MATLAB API for Spark

Tall Arrays
• Math

• Statistics

GPU Arrays
• Matrix Math

Deep Learning
• Image Classification

• Visualization

• Machine Learning

• Image Processing

Datastores

• Images

• Spreadsheets

• SQL

• Hadoop (HDFS)

• Tabular Text

• Custom Files
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Summary

 MATLAB makes it easy, convenient, and scalable to work with big data

– Access any kind of big data from any file system

– Use tall arrays to process and analyze that data on your desktop, clusters, or on 

Hadoop/Spark

There’s no need to learn big data programming or 
out-of-memory techniques -- simply use the same 

code and syntax you're already used to.
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For more information

 Advanced Data Analytics with MATLAB kiosk

 Website:

https://www.mathworks.com/solutions/big-data-matlab

 Web search for: 

“Big Data MATLAB”

https://www.mathworks.com/solutions/big-data-matlab

