

Gaining Business
Insights with MATLAB
and Big Data

David Willingham

How big is big?

What does "Big Data" even mean?

"Big data is a term for data sets that are so large or complex that traditional data processing applications are inadequate to deal with them."

Wikipedia

So, what's the (big) problem?

- Traditional tools and approaches won't work
 - Getting the data is hard; processing it is even harder
 - Need to learn new tools and new coding styles
 - Have to rewrite algorithms, often at a lower level of abstraction
- Quality of your results can be impacted
 - e.g., by being forced to work on a subset of your data

Big Data workflow

More data and collections

PROCESS AND ANALYZE

Adapt traditional processing tools or learn new tools to work with Big Data

MATLAB CONFERENCE 2017

Big solutions

Wouldn't it be nice if you could:

- Easily access data however it is stored
- Prototype algorithms quickly using small data sets
- Scale up to big data sets running on large clusters
- Using the same intuitive MATLAB syntax you are used to

- For data that doesn't fit into memory
- Lots of observations (hence "tall")
- Looks like a normal MATLAB array
 - Supports numeric types, tables, datetimes, strings, etc...
 - Supports basic math, stats, indexing, etc.
 - Statistics and Machine Learning Toolbox support (clustering, classification, etc.)

- Data is in one or more files
- Typically tabular data
- Files stacked vertically
- Data doesn't fit into memory (even cluster memory)

 Automatically breaks data up into small "chunks" that fit in memory

- "Chunk" processing is handled automatically
- Processing code for tall arrays is the same as ordinary arrays

- With Parallel Computing Toolbox, process several "chunks" at once
- Can scale up to clusters with MATLAB Distributed Computing Server

Big Data Workflow With Tall Data Types

Access Data

- Text
- Spreadsheet (Excel)
- Database (SQL)
- Custom Reader

Datastores for common types of structured data

Tall Data Types

- table
- cell
- double
- numeric
- cellstr
- datetime
- Categorical
- timetable

Tall versions of commonly used MATLAB data types

Exploration & Pre-processing

- Numeric functions
- Basic stats reductions
- Date/Time capabilities
- Categorical
- String processing
- Table wrangling
- Missing Data handling
- Summary visualizations:
 - Histogram/histogram2
 - Kernel density plot
 - Bin-scatter

Hundreds of pre-built functions

Machine Learning

- Linear Model
- Logistic Regression
- Discriminant analysis
- K-means
- PCA
- Random data sampling
- Summary statistics
- SVM, Naïve Bayes, Bagged Regression Trees Classification
- Lasso Regression

Key statistics and machine learning algorithms

MATLAB programming for data that does not fit into memory

Example: Working with Big Data in MATLAB

Objective: Create a model to predict the cost of a taxi ride in New York City

Inputs:

- Monthly taxi ride log files
- The local data set is small (~2 MB)
- The full data set is big (~25 GB)

Approach:

- Preprocess and explore data
- Develop and validate predictive model (linear fit)
 - Work with subset of data for prototyping
 - Scale to full data set on HDFS

Preview Data

Description

Location: New York City

Date(s): (Partial) January 2015

Data size: "small data" 13,693 rows / ~2 MB


```
>> ds = datastore('taxidataNYC_1_2015.csv');
>> preview(ds)
    VendorID
                tpep pickup datetime
                                         tpep dropoff datetime
                                                                                       trip distance
                                                                                                         pickup long
                                                                   passenger count
                                                                                        1.43
    2
                2015-01-09 02:53:26
                                         2015-01-09 03:01:26
                                                                                                         -74.004
                2015-01-25 05:29:56
                                                                                       10.74
                                         2015-01-25 06:03:40
                                                                                                         -73,998
                2015-01-11 10:41:57
                                         2015-01-11 10:49:26
                                                                                         1.6
                                                                                                         -73.986
                2015-01-05 13:00:31
                                         2015-01-05 13:03:45
                                                                                         0.5
                                                                                                         -74.007
                2015-01-14 11:47:23
                                         2015-01-14 11:51:02
                                                                                         0.5
                                                                                                         -73.997
                2015-01-17 22:49:44
                                         2015-01-17 22:57:01
                                                                                         1.3
                                                                                                         -73,979
                                                                                       20.32
                2015-01-19 06:01:36
                                         2015-01-19 06:34:16
                                                                                                         -73,975
                2015-01-26 15:17:21
                                         2015-01-26 16:03:06
                                                                   5
                                                                                        4.48
                                                                                                         -73.966
                                         2015-01-25 04:24:49
                2015-01-25 04:19:55
                                                                                        1.28
                                                                                                         -73,954
                2015-01-31 18:27:28
                                         2015-01-31 18:31:43
                                                                   5
                                                                                        1.24
                                                                                                         -73.969
```

MATLAB CONFERENCE 2017

Create a Tall Array

Calling Functions with a Tall Array

- Most results are evaluated only when explicitly requested (e.g., gather)
- MATLAB automatically optimizes queued calculations to minimize the number of passes through the data

Preprocess, clean, and explore data

```
% Remove some bad data
tt.trip minutes = minutes(tt.tpep dropoff datetime - tt.tpep pickup datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short</pre>
                                                                 Figure 1
                                                                                                 - - X
   tt.trip_minutes >= 60 * 12 | ... % unfeasibly long
                                                                  File Edit View Insert Tools Desktop Window Help
   🖺 🗃 📓 🐧 🕟 🥄 🤏 🤭 🐿 🐙 🔏 - 🗒 📗 🔡 🖿 🖽
                                                                                  Trip Distance
                                                                    4500
   4000
                                    % unfeasibly large fares
   tt.total amount > 10000;
                                                                    3500
tt(ignore, :) = [];
                                                                    3000
                                                                    2500
% Explore data
figure
                                                                    2000
histogram(tt.trip distance, 'BinLimits', [0 30])
                                                                    1500
title('Trip Distance')
                                                                    1000
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 6 sec
                                                                                     15
                                                                                          20
                                                                                               25
                                                                                                    30
- Pass 2 of 2: Completed in 6 sec
Evaluation completed in 12 sec
```


Fit predictive model

```
% Fit predictive model
model = fitlm(ttTrain, 'fare_amount ~ 1 + hr_of_day + trip_distance*trip_minutes')
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 7 sec
Evaluation completed in 8 sec
model =
Compact linear regression model:
   fare amount ~ 1 + hr of day + trip distance*trip minutes
Estimated Coefficients:
                                                    SE
                                                              tStat
                                                                           pValue
                                  Estimate
    (Intercept)
                                                  0.038002
                                                               74.12
                                      2.8167
   trip distance
                                                            360.16
                                      2.2207
                                                  0.006166
   hr of day
                                                 0.0019124
                                                             0.63901
                                                                            0.52282
                                    0.001222
   trip minutes
                                     0.24528
                                                  0.001793
                                                            136.79
   trip distance:trip minutes
                                                              -4.3102
                                                                         1.6336e-05
                                 -0.00053185
                                                0.00012339
Number of observations: 58793, Error degrees of freedom: 58788
Root Mean Squared Error: 3.06
R-squared: 0.927, Adjusted R-Squared 0.927
F-statistic vs. constant model: 1.86e+05, p-value = 0
```

WHILHR CONFERENCE ZOIL

Predict and validate model

```
% Predict and validate
yPred = predict(model,ttValidation);
residuals = yPred - ttValidation.fare amount;
figure
histogram(residuals, 'Normalization', 'pdf', 'BinLimits', [-50 50])
Evaluating tall expression using the Local MATLAB Session:
```

- Pass 1 of 2: Completed in 8 sec
- Pass 2 of 2: Completed in 5 sec

Evaluation completed in 15 sec

10

20

-30

-20

Scale to the Entire Data Set

Description

Location: New York City

Date(s):

All of 2015

Data size:

"Big Data"

150,000,000 rows / ~25 GB

Example: "small data" processing vs. Big Data processing

```
% Calculate average trip duration
mnTrip = mean(tt.trip_minutes,'omitnan')

% Execute commands and gather results into workspace
mn = gather(mnTrip)

% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime -
tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ...  % really short
    tt.trip_minutes >= 60 * 12 | ...  % unfeasibly long
    tt.trip_distance <= 1 | ...  % really short
    tt.trip_distance >= 12 * 55 | ...  % unfeasibly far
    tt.speed_mph > 55 | ...  % unfeasibly fast
    tt.total_amount < 0 | ...  % negative fares?!
    tt.total_amount > 10000;  % unfeasibly large fares

**(ignore : ` = '
```

```
% Access the data
ds = datastore('taxiData\*.csv');
tt = tall(ds);
Big Data processing
```

```
% Calculate average trip duration
mnTrip = mean(tt.trip minutes, 'omitnan')
% Execute commands and gather results into workspace
mn = gather(mnTrip)
% Remove some bad data
tt.trip minutes = minutes(tt.tpep dropoff datetime -
tt.tpep pickup datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip minutes <= 1 | ... % really short
   tt.trip_minutes >= 60 * 12 | ... % unfeasibly long
   tt.trip_distance <= 1 | ... % really short
   tt.trip_distance >= 12 * 55 | ... % unfeasibly far
   tt.speed_mph > 55 | ... % unfeasibly fast
   tt.total_amount < 0 | ... % negative fares?!
   /+:ir/ (.) = []:
```


Example: Running on Spark + Hadoop

```
% Hadoop/Spark Cluster
numWorkers = 16;
setenv('HADOOP_HOME', '/dev_env/cluster/hadoop');
setenv('SPARK_HOME', '/dev_env/cluster/spark');
cluster = parallel.cluster.Hadoop;
cluster.SparkProperties('spark.executor.instances') = num2str(numWorkers);
mr = mapreducer(cluster);
% Access the data
ds = datastore('hdfs://hadoop01:54310/datasets/taxiData/*.csv');
tt = tall(ds);
```


Demo: Running on Spark

Summary for tall arrays

MATLAB CONFERENCE 2017

Big Data capabilities in MATLAB

Datastores

- Images

Tabular Text

- SQL
- Hadoop (HDFS)

SCALE

PROCESS AND ANALYZE

Purpose-built capabilities for domain experts to work with big data locally

Tall Arrays

Math

- Visualization
- Statistics
- Machine Learning

GPU Arrays

- Matrix Math
- Image Processing

Deep Learning

Image Classification

Tall Arrays

Math, Stats, Machine Learning on Spark

Distributed Arrays

Matrix Math on Compute Clusters

MDCS for EC2

Cloud-based Compute Cluster

MapReduce

MATLAB API for Spark

MATLAB CONFERENCE 2017

Summary

- MATLAB makes it easy, convenient, and scalable to work with big data
 - Access any kind of big data from any file system
 - Use tall arrays to process and analyze that data on your desktop, clusters, or on Hadoop/Spark

There's no need to learn big data programming or out-of-memory techniques -- simply use the same code and syntax you're already used to.

For more information

- Advanced Data Analytics with MATLAB kiosk
- Website:

https://www.mathworks.com/solutions/big-data-matlab

Web search for:

"Big Data MATLAB"