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Identifying system level problems early and ensuring that all design requirements are 

met are two of the top challenges faced in developing mechatronic systems (1). This 

paper will illustrate how simulation allows the verification of the system performance 

throughout the development process, making it possible to identify system level 

problems early and optimize system level behavior to meet the design requirements. 

This methodology, known as Model-Based Design, will be applied to a classic motion 

control application where a load must be precisely positioned through a flexible shaft. 

I. Introduction 
With the accelerating pace of technology 

development, companies are in a race to be on 

the cutting edge. A January 2008 survey of 160 

electro-mechanical equipment manufacturers 

found that the top two drivers for improving 

development processes were shorter product 

development schedules and increased customer 

demand for better performing products (1). 

These two goals may seem contradictory; 

increasing performance would necessitate a 

longer development cycle. So how can we 

attempt to achieve both of these goals at the 

same time? 

Looking more specifically at some of the 

challenges that are inhibiting mechatronic 

product development (products that involve 

mechanical, electrical, control, and embedded 

components), we can group them into two 

general categories. Table 1 presents the results 

from a recent survey of companies doing 

mechatronic product development. Half of the 

challenges, such as “lack of cross-functional 

knowledge,” deal with issues associated with 

the multi-domain nature of the complete 

Challenge Response 

Difficulty finding and hiring experienced 
system engineers / lack of cross-
functional knowledge 

50% 

Early identification of system level 
problems 

45% 

Ensuring all design requirements are met 
in the final system 

40% 

Difficulty prediction / modeling system 
product behavior until physical 
prototypes exist 

32% 

Difficulty implementing an integrated 
product development solution for all 
disciplines involved in mechatronic 
product development 

28% 

Inability to understand the impact a 
design change will have across disciplines 

18% 

Table 1: These are the top six challenges of mechatronic 
product development according to a recent survey (1). 

system. With engineers traditionally working 

only in their area of expertise, this survey found 

that there are problems when it comes to 

integrating the domains together and dealing 

with the complete system. The other half of the 

challenges focus on testing, such as finding 

errors early in the development cycle and 

testing before hardware is available. The 

importance of early testing can be further 

illustrated by a NASA study that analyzed the 

relative costs of fixing errors based on what 
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phase of development they were introduced in 

and what phase they were first detected (2). 

From Figure 1, it is evident that detecting errors 

early in the design cycle, or as soon as possible 

after they are introduced, can have a dramatic 

impact on the cost of a project. 

 

Figure 1: Graph of the relative cost to fix an error based 
on project phase (2). 

To help address the challenges of multi-domain 

design and early testing for motion control 

applications, this paper describes how to use 

Model-Based Design to perform system-level 

simulation to combine multiple domains such as 

electrical, mechanical, hydraulic, and control in 

a software environment where testing can be 

done throughout the design process.  

To illustrate Model-Based Design, we will use an 

example of a precision motion system that 

requires a load to be moved from one position 

to another and back to the original position in a 

certain amount of time. The system consists of 

a DC motor driving a load through a flexible 

shaft. This mimics a drive system as you may 

typically find in many sorts of mechatronic 

machinery. The original design moves at a 

maximum speed of 150 rad/s and a maximum 

acceleration of 2000 rad/s2. The goal is to 

increase the speed to 250 rad/s and the 

acceleration to 5000 rad/s2 without losing any 

position accuracy. This will result in an 

increased throughput of the larger system. 

Simply increasing these parameters in the 

current system leads to unacceptable position 

accuracy as shown in Figure 2. The settling time 

for the faster move is almost identical to the 

slower move (around 1.5 seconds). So even 

with the higher velocity and acceleration, the 

move time is approximately the same. To 

improve the design we will first develop a 

model of the physical system including the DC 

motor and transmission shaft and then 

investigate improving the control algorithm. 

Finally we will see how we can test and 

implement the new controller design with the 

physical system. 

 

Figure 2: Plot of the position and error in position when 
making a point to point movement. The original 
performance is shown in gray; the performance for a 
more aggressive move is shown in black. 

This paper will explore many advantages that a 

system simulation in a software environment 

provides including: helping to understand the 

behavior of the system, optimizing design 

parameters, developing optimal control 

algorithms, testing control algorithms, and 

qualifying the production controller before 

connecting it to the real plant. Leveraging these 

advantages of Model-Based Design ultimately 

results in shorter design cycles while 

simultaneously improving product 

performance. For this we will use a software 
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environment developed by The MathWorks, 

based on the well-known tools MATLAB® and 

Simulink®. The results in this paper are based 

on release 2009a of this environment. 

II. Plant Modeling 
The plant, or the physical system we are trying 

to control, is pictured in Figure 3. It consists of a 

power amplifier driving a DC motor with two 

rotary optical encoders for measuring the 

position of the motor shaft and the load. The 

motor is connected to the load through a small 

flexible shaft to approximate the compliance 

found between the actuator and the load in 

many motion control systems. 

 

Figure 3: Picture of the plant that is being controlled. 

In order to improve the controller performance, 

which is the ultimate goal, we must first 

develop a model of the plant to use when 

designing the controller. There are two primary 

approaches for creating a model of a system or 

a component in a system: data-driven and first-

principles. 

Data-driven modeling involves generating input 

signals to send into the actual system and then 

measuring the resulting output. These 

measurements can be used to derive a dynamic 

representation of the system, such as a transfer 

function. Because it requires measured data, 

one limitation of this approach is that it cannot 

be used before the actual system exists. But 

because it uses data and does not require any 

insight into how the system is constructed, it 

can be a quick way to develop a model with a 

clear correspondence to the real system. 

Because the model is not based on the 

underlying system components, the parameters 

in the model have no connection to physical 

model parameters, such as the stiffness of the 

transmission shaft. This so-called black-box 

model can be used to help design and test 

control algorithms, but cannot be used to 

investigate making changes to the plant design. 

First-principles modeling involves building up a 

model based on the individual components in 

the system and their behavior. It generally takes 

more time than the data-driven approach, but 

provides insight into the plant and how various 

parameters can affect the overall system 

behavior. For a new design with no physical 

prototype, this is the only available path. 

In the motion control example, we are 

improving the performance of an existing 

system, so we will start by using the data-driven 

approach to develop a model. Then we will 

investigate what a first-principles modeling 

approach would be for the same system. 

Data-Driven Modeling 

“The Existing System” 

There are several approaches for doing data-

driven modeling including neural-networks, 

optimization, and system identification. 

Working in MATLAB® gives you quick access to 

these different approaches. For the purposes of 

this motion control example, we will use linear 

system identification algorithms that use 

measured data to identify models of the 

following form: 
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𝑦 = 𝐺𝑢 + 𝐻𝑒  

G describes the system dynamics from the input 

u to the output y. H describes the output 

disturbance and is called a noise model (3). 

To carry out the system identification and 

generate the model, we first need to collect 

data from the plant.  If the plant that is being 

modeled exists on its own, arbitrary signals can 

be sent into the plant inputs, and the resulting 

plant outputs can be measured. It is important 

to construct the input signal such that it 

captures the plant dynamics of interest. 

 

Figure 4: Measured frequency response of the open-loop 
plant. 

In the case of the motion control example, the 

plant is in use in a larger system so we need to 

take measurements without disrupting normal 

operation. We could simply acquire data as its 

running, but to capture more complete 

dynamics over a range of frequencies, band-

limited white noise with a sampling rate of 500 

Hz is added to the voltage signal going into the 

motor and the total voltage going into the 

motor is measured. Using existing knowledge of 

the feedback control structure, these two 

values can be used to compute a frequency 

response of just the open loop plant, similar to 

what you might acquire from a spectrum 

analyzer as shown in Figure 4. We see one 

resonance peak associated with the compliance 

of the shaft that is around 55 Hz. 

 

Figure 5: Graphical user interface for the System 
Identification Toolbox™. 

 

Figure 6: Measured frequency response and the model 
developed using system identification techniques show 
good correspondence over the frequency range of 
interest. 

The frequency response data cannot be used 

directly in a time domain simulation, so next we 

convert it to a transfer function model using 

system identification. For this we used the 

System Identification Toolbox™, which allows 

you to do this in an interactive environment as 

shown in Figure 5. The frequency response data 

is imported into the tool, a model structure is 

chosen, and then the model estimate can be 

evaluated. For this example, a fourth-order 

state-space model was chosen. The model 
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frequency response and the measured 

frequency response are both plotted in Figure 

6, which shows that the resonance peak in the 

estimated model closely matches the measured 

data. 

This state-space model represents the dynamics 

of the plant, G, and can now be used directly in 

Simulink® to design and tune the controller. 

First-Principles Modeling 

“The New Design” 

Another approach to model the motion control 

system is to derive dynamic equations for the 

system based on the physical components. 

Assuming there is only one dominant resonance 

mode, the core dynamics of the transmission 

system can be simplified to the schematic in 

Figure 7. 

 

Figure 7: Schematic of the major mechanical components 
in the motion control plant. 

T represents the torque from the motor, x1, J1 

and x2, J2 represent the angular position and 

inertia of the motor and the load respectively, 

b1 and b2 represent the damping of the 

bearings, and k and b12 represent the stiffness 

and damping of the transmission shaft. For this 

simple system it is fairly straightforward to use 

Newton’s laws to derive the equation of motion 

for the two bodies: 

 

𝐽1𝑥1
′′ = −𝑏1𝑥1

′ − 𝑘 𝑥1 − 𝑥2 − 𝑏12 𝑥1
′ − 𝑥2

′  + 𝑇 

𝐽2𝑥2
′′ = −𝑏2𝑥2

′ + 𝑘 𝑥1 − 𝑥2 + 𝑏12(𝑥1
′ − 𝑥2

′ ) 

These equations can then be implemented in 

Simulink® as the block diagram given in Figure 

8. 

 

Figure 8: Simulink® model representing the dynamics of 
the flexible transmission shaft. 

This block diagram then can be evaluated with 

different torque inputs to simulate the behavior 

of the system. 

To have a model of the complete plant as seen 

from the controller, we also require a model of 

the electrical part of the system: the power 

amplifier and the motor coil. The power 

amplifier contains a high performance current 

control loop such that the voltage input acts as 

a reference for the applied motor torque. This 

allows us to neglect its dynamic behavior in 

relation to the mechanical dynamics and we can 

therefore treat it as a simple gain.  

For this example, deriving the differential 

equations to describe the system dynamics was 

relatively straightforward. In many cases the 

systems are more complex and deriving those 

equations can be a challenging and time-

consuming task. Another first-principles 

modeling approach is to leverage advances in 

modeling tools to build up the plant from basic 

physical component blocks. Rather than the 

signal-based blocks that were used to model 
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the differential equations, physical modeling 

blocks have energy conserving ports that 

represent physical connections. 

Within Simulink® this technology is provided by 

Simscape™. It provides blocks for several 

different physical domains including 

mechanical, electrical, hydraulic, and thermal. 

There is also the ability to extend existing blocks 

or create blocks from scratch using an authoring 

language that involves describing the basic 

equations for that particular component. Using 

physical modeling tools, the model of the 

motion control system can be created directly 

from the schematic in Figure 7 without deriving 

any equations. The block diagram for the 

physical model of the motion control system is 

shown in Figure 9. Not shown in the figure are 

additional sensor and actuator blocks that you 

can connect to the physical components to 

transition from the signal domain of Simulink to 

the physical domain of Simscape and vice-versa. 

These translation blocks allow you to apply the 

control system defined in Simulink to the 

physical model in Simscape in a fully integrated 

environment. 

 

Figure 9: Physical modeling representation of the motion 
control plant using Simscape blocks. 

Another option to obtain an accurate model of 

the mechanics of the motion system is provided 

by SimMechanics™. This method is especially 

useful if a CAD design of the system already 

exists. Using a CAD translator tool, which is 

available for a growing number of CAD 

environments, it is possible to automatically 

create a model of the rigid bodies in a system 

and connect them through appropriate joints. 

This saves even more time in developing the 

model and can also provide an animated 

visualization of the plant. Figure 10 shows an 

example of this for the motion control system 

considered here. After importing the CAD file, 

we can add a torque actuator and sensors to 

connect it to our control system. We also need 

to add damping to the two bearings (b1 and b2) 

as well as the stiffness and damping of the 

transmission shaft (b12 and k). 

 

Figure 10: Visualization of the motion control system 
after importing from a CAD environment. 

We have now looked at three different 

methods for creating a first-principles model: 

deriving differential equations, modeling using 

physical components, and importing from an 

existing CAD design. In all of these methods we 

are using parameters, like stiffness and 

damping, which correspond to real physical 

properties. How do we find the values for these 

parameters? 

In some cases these values could come from a 

data sheet, they could come from direct 

measurements that have been made on the 
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system, or they could simply be guesses. The 

values provide a starting point for design work, 

but may not have the accuracy that is necessary 

for finely tuning a control loop. Once the 

physical plant is available, it may be helpful to 

use measurements from the system to validate 

the model. This ensures that your model 

provides a reasonable representation of the 

physical system and in the case of a disparity 

can be used to tune the parameters to provide 

a closer match. 

This process, known as parameter estimation, 

involves acquiring data from the actual plant, 

choosing the parameters to estimate (specifying 

a bound if desired), and then using optimization 

algorithms to minimize the error between the 

simulated and measured responses. Using tools 

such as Simulink Design Optimization™ this 

process is largely automated. 

In our example, we know all the parameters 

from our knowledge of the system except the 

stiffness and damping of the transmission shaft. 

So we can use measured data (similar to the 

data we used for data-driven modeling) to 

estimate those two parameters. We pick an 

initial guess and then use an optimization 

algorithm to find values of the two parameters 

to minimize the error between the simulated 

and measured data. After this process, we find 

the following values for the unknown 

parameters: 

𝑏12 = 2.0 × 10−7 N∙m∙s rad  

𝑘 = 1.3 × 10−2 N∙m rad  

Like the data-driven modeling approach, we 

now have a model of our plant that closely 

matches its actual behavior. But in addition, we 

have gained some insight into the physical 

properties of the plant. We could use this 

model to investigate how changes to the 

physical plant would affect our system 

response. For example, we could try increasing 

the stiffness of the transmission shaft to 

improve the positional accuracy of the load 

rather than changing the control algorithm. 

III. Control Development 
Once a plant model has been developed, the 

motion control algorithm can be designed or 

optimized. We will look at how to develop two 

different types of control algorithms. First we 

will discuss classic control algorithms where 

information from the sensors on the plant is fed 

back and used to calculate an actuator value 

based on a differential or difference equation. 

We will also investigate developing logic, or 

supervisory, controllers. These controllers 

usually consist of some heuristic algorithm that 

makes a decision based on time or measured 

data. For example, it may be used to schedule 

different motion profiles over the course of a 

production run. In our case, we will develop 

some logic to look for faults in our system and 

take an appropriate response. 

Classic Control 

Designing control systems involves first laying 

out the general control structure. Working in a 

graphical simulation environment makes it 

trivial to quickly try different control topologies 

by simply rerouting lines in the diagram. For 

example you might have an idea that adding a 

new sensor would provide valuable feedback to 

your controller. You can quickly test your theory 

by making that additional connection and 

evaluate the result before making the 

investment in the actual sensor. 

In our example, the control structure already 

exists and we are just interested in improving it, 

so the first step is to model the existing 

controller. It consists of both a feed-forward 

controller and a feedback control. The feed-
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forward control calculates a nominal voltage to 

send to the motor based on the desired 

trajectory (4). Feedback control on the other 

hand relies on measurements of the load 

position to adjust the voltage going to the 

motor and can compensate for disturbances 

such as a varying load. For the purposes of this 

example, we will focus on how to improve the 

current feedback control system and leave the 

feed-forward system as is. 

The original feedback control consists of a single 

discrete PD controller running at a sampling 

rate of 500 Hz (5). The input to the controller is 

the error in the position and the output is a 

commanded voltage which is added to the feed-

forward voltage. Given this information about 

the original structure of the feed-forward and 

feedback controllers, we can construct a 

complete closed-loop model of our system as 

shown in Figure 11. 

 

Figure 11: Model of the complete closed loop system. 

With this complete system model we can now 

visualize the change in performance as the 

controller design is altered. While tuning the 

closed-loop response, we will look at the 

response of the load position with a step 

change in the reference position, disabling the 

feed-forward control. First we will investigate 

adding a notch filter to the feedback path to 

reduce the effect of the resonance peak we 

discovered while modeling the system, then we 

will optimize the PD controller gains to further 

improve the performance of the system. 

 

Figure 12: Interactive open-loop bode plot used for 
designing the controller. 

To interactively add complexity or design the 

structure of a controller from scratch, we can 

use control design tools that will analyze the 

model and provide useful information for 

quickly trying different control strategies. In our 

case, to add a notch filter, we can first add an 

arbitrary transfer function that will ultimately 

represent the filter. Using Simulink Control 

Design™ we can then display a plot of a 

linearized version of the open loop system 

response as shown in Figure 12. We have 

chosen to use a bode plot, but the root-locus or 

Nichols plot of the open-loop system could also 

be displayed. 

We can see the resonance peak that is limiting 

the feedback gain of the system. From within 

this plot, we can interactively modify our 

controller by adding poles, zeros, or different 

filters. As soon as these components are added, 

the open loop bode response will change to 
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reflect the new design. At the same time, you 

can see the resulting change in the closed-loop 

system response to understand the impact the 

changes have on the full system. In our case, we 

place a notch filter centered right on the 

resonance peak which lowers the magnitude of 

the peak and reduces the oscillation in the 

closed-loop step response of the system. 

 

Figure 13: Open-loop bode plot with the notch filter 
interactively added. 

The updated open-loop bode plot is shown in 

Figure 13. The red circle is the location of the 

notch filter and the black diamonds represent 

the width of the filter.  

After adding the notch filter, the closed-loop 

step response has reduced oscillations 

associated with the resonance mode as shown 

in Figure 14.  

 

 

Figure 14: Closed-loop step response before and after 
adding the notch filter. 

Design Optimization 

Next we can try to further improve the step 

response by tuning the PD controller gains. We 

could do this in a similar manner as the notch 

filter design, but as an example we will use a 

different approach based on numerical 

optimization. Since we are in a simulation 

environment, we can run many simulations 

quickly and use optimization algorithms to 

adjust the parameters to meet a specific goal. 

We can define the goal as a time-based 

requirement for one or more signals in the 

model. In our case we set a specific set of step 

requirements for the position signal which can 

be displayed as boundaries on the step 

response plot as shown in Figure 15. 

We can then pick the parameters we want to 

tune. In our case, we pick the P and D gains of 

our feedback controller. Keep in mind, 

however, that these parameters could be any 

part of the model. So with a first-principles 

model, you could also tune physical parameters 

to help design parts of the plant itself in 

addition to the controller. 
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Figure 15: Step response before and after tuning the PID 
gains with the performance requirements indicated. 

 

Figure 16: Position and error in position for a move with 
the original controller and the improved design. 

After running the optimization routine you can 

see in Figure 15 that the step response has 

been improved and now lies within the design 

requirements. Now that we have completed the 

feedback controller design we can simulate the 

behavior of the complete system for the desired 

point-to-point trajectory already considered in 

Figure 2. The result, given in Figure 16, clearly 

shows the position error is well within the 

desired range and that the settling time has 

been reduced to around 0.5 seconds allowing 

the entire cycle time to be reduced. 

Logic Control 

In addition to classical control, many motion 

control applications will also have some logic-

based control. Logic control usually changes 

what the system is doing based on some event. 

It could be a certain amount of time passing, an 

alarm going off, or an object reaching a certain 

position. Once this event happens, the system 

moves into a different state, perhaps initiating a 

new motion, going into a shutdown mode, or 

energizing a different part of the machine.  

 

Figure 17: State chart defining the error detection logic in 
the motion control system. 

A natural way to describe this type of logic is to 

draw the different states the system can exist in 

and the transitions that cause the system to 

move from one state to another, known as a 

state chart. Modern simulation tools allow 

components in the system to have behavior 

defined directly by a state chart as shown in 

Figure 17. This chart, built using Stateflow®, 

represents the fault-detection logic for our 

motion control system. It starts in a normal 

running state, but if the position goes outside of 

a safe limit, it switches into a warning state. If 

the position does not return to the safe limit 

within 5 seconds, we transition into an 
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emergency stop state. Alternatively, if the 

position goes too far outside the range it will 

switch to the emergency stop state 

immediately. 

The system can take different actions 

depending on what state you are in. In our case, 

for example, when in the emergency stop state, 

we will use a backup control system and 

command the position to a safe location. 

Now this is just a simple example, but in more 

complex cases defining this logic in a state chart 

makes it easier to understand than pages of 

written logic statements. Another advantage is 

that while the simulation is running, the state 

chart is highlighted to indicate the current state 

and the transitions that are taken. This allows 

one to easily visualize the logic and understand 

why the system is behaving in a certain way. 

Ultimately it makes it easier to identify and 

correct problems in the control logic. 

IV. Testing 
In addition to providing an environment for 

quickly and interactively designing motion 

control algorithms, a simulation environment 

also provides capabilities for thoroughly testing 

the motion control system at several different 

levels to help ensure that errors are caught as 

soon as possible and before fixing them 

becomes expensive. 

Running Simulations 

The first stage of testing can be done right in 

the simulation environment. By simulating the 

system model, the requirements can be 

validated very early in the development 

process.  In this case study we had a valid set of 

performance requirements to meet – but what 

if the speed and acceleration requirements 

were 50% faster, how long would that have 

taken to determine that the motor and 

controller would not be able to meet the 

demands being placed on them?  Simulation 

would quickly highlight this and a determination 

to relax the requirements or change in the 

motor design would be needed. 

Once the control design is complete, a range of 

different test scenarios can be run by changing 

the inputs or the parameters of the simulation. 

This allows testing of different scenarios or 

variations in the plant parameters. For example, 

we can run the simulation for a range of 

stiffness and damping values given a certain 

distribution to ensure the motion system meets 

the performance requirements given 

manufacturing variation in the transmission 

shaft. 

Rapid Prototyping 

Once the design has been tested in simulation, 

you may then want to ensure the control 

algorithms work with the actual plant, or a 

physical prototype of the plant. Rapid 

prototyping is testing the control algorithms in 

real-time with the physical plant hardware and 

can be done before deciding on the final 

controller platform. 

To test the design in real-time, we use an 

extension of Simulink called xPC Target™, which 

enables the use of common PC-compatible 

computer hardware for real-time testing. In 

Simulink, the plant model is exchanged for 

blocks that represent connections to the actual 

plant hardware. For example, one can use 

analog input and output blocks for a particular 

data acquisition card to represent analog signals 

going to and coming from the plant. Once that 

change has been made, the model can be 

compiled, downloaded and run in real-time on 

that separate target computer, assuming it has 

the appropriate data acquisition or 

communication cards installed. Those cards are 
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connected to the actual plant so that the model 

running on the target drives it directly. 

While running the controller in real-time on a 

target computer there can still be a connection 

to the development computer, or host, so that 

the signals on the target can be monitored and 

parameters can be adjusted. With this approach 

you can use the host machine to run through 

the same tests that were used in simulation 

directly on the plant hardware to ensure that 

any approximations or simplifications made 

when modeling the plant do not have a 

significant impact on the system performance. 

If necessary, controller gains can be further 

tuned on-line until the performance is 

acceptable. 

 

Figure 18: Plant model replaced with a hardware 
interface for rapid prototyping. 

In our motion control example, we use a 

Diamond MM-32 card to send the voltage 

command to the motor and a RTD® DM6814 

encoder card to read the motor and load 

positions. In the simulation environment, the 

voltage signal from the controller is connected 

to the appropriate analog output block and the 

encoder input block outputs the measured 

position signal. We also insert signal 

conditioning blocks to convert the data types 

and scale the signals as necessary as shown in 

Figure 18.  

After making changes to the model, we compile 

and run it on the xPC Target™ platform on a PC-

104 form factor PC. The analog output and 

encoder cards in the target PC are connected to 

the motion control system shown in Figure 3. 

From the host PC, we can then send commands 

to execute the control algorithm and run 

through a series of tests, logging the data to 

ensure that it meets our original performance 

goals. Figure 19 shows the response of the 

actual system compared to the predicted 

response from the simulation shown in Figure 

16. Note that there are differences, but the 

simulated response was also a good prediction 

of the actual system behavior.  

 

Figure 19: Plot of the position and error in position when 
making a point to point movement; measured from the 
actual system using Rapid Prototyping. 

V.  Next Steps 

Implementation 

In addition to being used for designing and 

testing the controller, the system model that 

has been developed in the simulation 

environment can serve as an executable 

specification for software engineers to refer to 

as they develop the embedded code. Rather 

than having only a textual description of the 

algorithm, the model can be run in various 

different scenarios so the original intent cannot 
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be misinterpreted. More than that, because the 

model can represent a complete description of 

the system, the process of creating the 

embedded code can be automated. This allows 

algorithmic changes to be made at the model 

level and then immediately implemented on the 

target hardware without a lengthy coding cycle. 

It also means that the same model can be 

deployed to different target platforms so that 

the decision on what platform to adopt can be 

made later in the design cycle. Additionally this 

allows for easier upgrades to a different 

platform in the future without having to re-

code the algorithms. 

HIL 

After implementing the control algorithms onto 

the final platform, it may be helpful to test the 

final controller before connecting it to the 

actual plant if, for example, an error in the 

controller could cause costly damage to the 

system or could pose a safety threat. Rather 

than developing a new tool, the plant model 

developed earlier can be reused to now test the 

final control system.  

Qualifying the production controller with a 

simulated version of the plant running in real-

time is known as hardware-in-the-loop (HIL) 

testing. The workflow is similar to rapid 

prototyping except rather than the controller, 

you run the plant model on a PC in real-time. By 

using HIL testing, you can verify the production 

controller meets the executable specification, 

and underlying requirements not only across its 

full operating envelope but even its error 

handling software. For example, the fault 

detection logic could be fully tested without 

risking the actual plant. In the end you gain 

greater confidence that the controller will work 

as intended.  

VI. Conclusions 
It is now common practice for mechanical and 

mechatronic designers to make use of a 

computer-aided design (CAD) tool when 

designing a new mechanical component. It is 

generally seen as a necessity to prevent small 

mistakes from becoming very costly when they 

are not found until the actual assembly of the 

design. To further reduce the occurrence of 

(human) errors, there is also a growing use of 

automatically generated code to machine 

individual parts of the design on Computer 

Numerical Controlled (CNC) machines. 

Model-Based Design is the extension of those 

same principles to the functional behavior of a 

complete mechanical, or more often a 

mechatronic design. It specifically aims to 

reduce the risk of not meeting the functional 

requirements by enabling early and continuous 

verification throughout the entire design 

workflow. Furthermore, it provides an 

environment that is rich with numerical and 

graphical analysis and design tools that 

stimulate innovation and cooperation within 

design teams.  

All this is combined with automatic code 

generation capabilities for real-time testing of 

the design and a growing acceptance of 

embedded software designers that code 

generation technology is not only a viable way 

to deal with the exponential growth in 

complexity and size of embedded software, but 

also becoming sufficiently powerful and 

efficient for actual production use. 

This paper has illustrated these advances using 

an admittedly simple, but realistic motion 

control system, showing a range of software 

technologies in modeling and control design 

that are now readily available ‘off the shelf.’ 

The initial application of Model-Based Design on 
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a real project within a design team will require 

investment of time and money, as well as 

willingness from those involved to do things 

differently. There are, however, many reported 

cases where this approach has approximately 

cut development time in half, and where 

Model-Based Design has been successfully 

applied company-wide (6). 
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