

 91806v00 11/2009

Design and Verification of Motion Control Algorithms Using Simulation

Douglas Eastman, Paul Lambrechts, Arkadiy Turevskiy

The MathWorks, Inc. Natick, MA, 01760

Identifying system level problems early and ensuring that all design requirements are

met are two of the top challenges faced in developing mechatronic systems (1). This

paper will illustrate how simulation allows the verification of the system performance

throughout the development process, making it possible to identify system level

problems early and optimize system level behavior to meet the design requirements.

This methodology, known as Model-Based Design, will be applied to a classic motion

control application where a load must be precisely positioned through a flexible shaft.

I. Introduction
With the accelerating pace of technology

development, companies are in a race to be on

the cutting edge. A January 2008 survey of 160

electro-mechanical equipment manufacturers

found that the top two drivers for improving

development processes were shorter product

development schedules and increased customer

demand for better performing products (1).

These two goals may seem contradictory;

increasing performance would necessitate a

longer development cycle. So how can we

attempt to achieve both of these goals at the

same time?

Looking more specifically at some of the

challenges that are inhibiting mechatronic

product development (products that involve

mechanical, electrical, control, and embedded

components), we can group them into two

general categories. Table 1 presents the results

from a recent survey of companies doing

mechatronic product development. Half of the

challenges, such as “lack of cross-functional

knowledge,” deal with issues associated with

the multi-domain nature of the complete

Challenge Response

Difficulty finding and hiring experienced
system engineers / lack of cross-
functional knowledge

50%

Early identification of system level
problems

45%

Ensuring all design requirements are met
in the final system

40%

Difficulty prediction / modeling system
product behavior until physical
prototypes exist

32%

Difficulty implementing an integrated
product development solution for all
disciplines involved in mechatronic
product development

28%

Inability to understand the impact a
design change will have across disciplines

18%

Table 1: These are the top six challenges of mechatronic
product development according to a recent survey (1).

system. With engineers traditionally working

only in their area of expertise, this survey found

that there are problems when it comes to

integrating the domains together and dealing

with the complete system. The other half of the

challenges focus on testing, such as finding

errors early in the development cycle and

testing before hardware is available. The

importance of early testing can be further

illustrated by a NASA study that analyzed the

relative costs of fixing errors based on what

Presented at ESC Boston 91806v00 11/2009

phase of development they were introduced in

and what phase they were first detected (2).

From Figure 1, it is evident that detecting errors

early in the design cycle, or as soon as possible

after they are introduced, can have a dramatic

impact on the cost of a project.

Figure 1: Graph of the relative cost to fix an error based
on project phase (2).

To help address the challenges of multi-domain

design and early testing for motion control

applications, this paper describes how to use

Model-Based Design to perform system-level

simulation to combine multiple domains such as

electrical, mechanical, hydraulic, and control in

a software environment where testing can be

done throughout the design process.

To illustrate Model-Based Design, we will use an

example of a precision motion system that

requires a load to be moved from one position

to another and back to the original position in a

certain amount of time. The system consists of

a DC motor driving a load through a flexible

shaft. This mimics a drive system as you may

typically find in many sorts of mechatronic

machinery. The original design moves at a

maximum speed of 150 rad/s and a maximum

acceleration of 2000 rad/s2. The goal is to

increase the speed to 250 rad/s and the

acceleration to 5000 rad/s2 without losing any

position accuracy. This will result in an

increased throughput of the larger system.

Simply increasing these parameters in the

current system leads to unacceptable position

accuracy as shown in Figure 2. The settling time

for the faster move is almost identical to the

slower move (around 1.5 seconds). So even

with the higher velocity and acceleration, the

move time is approximately the same. To

improve the design we will first develop a

model of the physical system including the DC

motor and transmission shaft and then

investigate improving the control algorithm.

Finally we will see how we can test and

implement the new controller design with the

physical system.

Figure 2: Plot of the position and error in position when
making a point to point movement. The original
performance is shown in gray; the performance for a
more aggressive move is shown in black.

This paper will explore many advantages that a

system simulation in a software environment

provides including: helping to understand the

behavior of the system, optimizing design

parameters, developing optimal control

algorithms, testing control algorithms, and

qualifying the production controller before

connecting it to the real plant. Leveraging these

advantages of Model-Based Design ultimately

results in shorter design cycles while

simultaneously improving product

performance. For this we will use a software

Requirements Design Coding Testing

R
e
la

ti
v

e

c

o
s

t
to

 f
ix

 a
n

e
rr

o
r

Project phase where error is fixed

requirements phase

design phase

Errors introduced in:

coding phase

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

100

150

A
n

g
le

 (
ra

d
)

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

4

Time (s)

E
rr

o
r

(r
a

d
)

Existing

Proposed

Presented at ESC Boston 91806v00 11/2009

environment developed by The MathWorks,

based on the well-known tools MATLAB® and

Simulink®. The results in this paper are based

on release 2009a of this environment.

II. Plant Modeling
The plant, or the physical system we are trying

to control, is pictured in Figure 3. It consists of a

power amplifier driving a DC motor with two

rotary optical encoders for measuring the

position of the motor shaft and the load. The

motor is connected to the load through a small

flexible shaft to approximate the compliance

found between the actuator and the load in

many motion control systems.

Figure 3: Picture of the plant that is being controlled.

In order to improve the controller performance,

which is the ultimate goal, we must first

develop a model of the plant to use when

designing the controller. There are two primary

approaches for creating a model of a system or

a component in a system: data-driven and first-

principles.

Data-driven modeling involves generating input

signals to send into the actual system and then

measuring the resulting output. These

measurements can be used to derive a dynamic

representation of the system, such as a transfer

function. Because it requires measured data,

one limitation of this approach is that it cannot

be used before the actual system exists. But

because it uses data and does not require any

insight into how the system is constructed, it

can be a quick way to develop a model with a

clear correspondence to the real system.

Because the model is not based on the

underlying system components, the parameters

in the model have no connection to physical

model parameters, such as the stiffness of the

transmission shaft. This so-called black-box

model can be used to help design and test

control algorithms, but cannot be used to

investigate making changes to the plant design.

First-principles modeling involves building up a

model based on the individual components in

the system and their behavior. It generally takes

more time than the data-driven approach, but

provides insight into the plant and how various

parameters can affect the overall system

behavior. For a new design with no physical

prototype, this is the only available path.

In the motion control example, we are

improving the performance of an existing

system, so we will start by using the data-driven

approach to develop a model. Then we will

investigate what a first-principles modeling

approach would be for the same system.

Data-Driven Modeling

“The Existing System”

There are several approaches for doing data-

driven modeling including neural-networks,

optimization, and system identification.

Working in MATLAB® gives you quick access to

these different approaches. For the purposes of

this motion control example, we will use linear

system identification algorithms that use

measured data to identify models of the

following form:

Presented at ESC Boston 91806v00 11/2009

𝑦 = 𝐺𝑢 + 𝐻𝑒

G describes the system dynamics from the input

u to the output y. H describes the output

disturbance and is called a noise model (3).

To carry out the system identification and

generate the model, we first need to collect

data from the plant. If the plant that is being

modeled exists on its own, arbitrary signals can

be sent into the plant inputs, and the resulting

plant outputs can be measured. It is important

to construct the input signal such that it

captures the plant dynamics of interest.

Figure 4: Measured frequency response of the open-loop
plant.

In the case of the motion control example, the

plant is in use in a larger system so we need to

take measurements without disrupting normal

operation. We could simply acquire data as its

running, but to capture more complete

dynamics over a range of frequencies, band-

limited white noise with a sampling rate of 500

Hz is added to the voltage signal going into the

motor and the total voltage going into the

motor is measured. Using existing knowledge of

the feedback control structure, these two

values can be used to compute a frequency

response of just the open loop plant, similar to

what you might acquire from a spectrum

analyzer as shown in Figure 4. We see one

resonance peak associated with the compliance

of the shaft that is around 55 Hz.

Figure 5: Graphical user interface for the System
Identification Toolbox™.

Figure 6: Measured frequency response and the model
developed using system identification techniques show
good correspondence over the frequency range of
interest.

The frequency response data cannot be used

directly in a time domain simulation, so next we

convert it to a transfer function model using

system identification. For this we used the

System Identification Toolbox™, which allows

you to do this in an interactive environment as

shown in Figure 5. The frequency response data

is imported into the tool, a model structure is

chosen, and then the model estimate can be

evaluated. For this example, a fourth-order

state-space model was chosen. The model

10
0

10
1

10
2

-40

-20

0

20

40

60

80

100

A
m

p
li

tu
d

e
 (

d
B

)

Frequency (Hz)

10
0

10
1

10
2

-50

0

50

100
A

m
p

li
tu

d
e
 (

d
b

)

Frequency (Hz)

Measured Data

Model

Presented at ESC Boston 91806v00 11/2009

frequency response and the measured

frequency response are both plotted in Figure

6, which shows that the resonance peak in the

estimated model closely matches the measured

data.

This state-space model represents the dynamics

of the plant, G, and can now be used directly in

Simulink® to design and tune the controller.

First-Principles Modeling

“The New Design”

Another approach to model the motion control

system is to derive dynamic equations for the

system based on the physical components.

Assuming there is only one dominant resonance

mode, the core dynamics of the transmission

system can be simplified to the schematic in

Figure 7.

Figure 7: Schematic of the major mechanical components
in the motion control plant.

T represents the torque from the motor, x1, J1

and x2, J2 represent the angular position and

inertia of the motor and the load respectively,

b1 and b2 represent the damping of the

bearings, and k and b12 represent the stiffness

and damping of the transmission shaft. For this

simple system it is fairly straightforward to use

Newton’s laws to derive the equation of motion

for the two bodies:

𝐽1𝑥1
′′ = −𝑏1𝑥1

′ − 𝑘 𝑥1 − 𝑥2 − 𝑏12 𝑥1
′ − 𝑥2

′ + 𝑇

𝐽2𝑥2
′′ = −𝑏2𝑥2

′ + 𝑘 𝑥1 − 𝑥2 + 𝑏12(𝑥1
′ − 𝑥2

′)

These equations can then be implemented in

Simulink® as the block diagram given in Figure

8.

Figure 8: Simulink® model representing the dynamics of
the flexible transmission shaft.

This block diagram then can be evaluated with

different torque inputs to simulate the behavior

of the system.

To have a model of the complete plant as seen

from the controller, we also require a model of

the electrical part of the system: the power

amplifier and the motor coil. The power

amplifier contains a high performance current

control loop such that the voltage input acts as

a reference for the applied motor torque. This

allows us to neglect its dynamic behavior in

relation to the mechanical dynamics and we can

therefore treat it as a simple gain.

For this example, deriving the differential

equations to describe the system dynamics was

relatively straightforward. In many cases the

systems are more complex and deriving those

equations can be a challenging and time-

consuming task. Another first-principles

modeling approach is to leverage advances in

modeling tools to build up the plant from basic

physical component blocks. Rather than the

signal-based blocks that were used to model

Presented at ESC Boston 91806v00 11/2009

the differential equations, physical modeling

blocks have energy conserving ports that

represent physical connections.

Within Simulink® this technology is provided by

Simscape™. It provides blocks for several

different physical domains including

mechanical, electrical, hydraulic, and thermal.

There is also the ability to extend existing blocks

or create blocks from scratch using an authoring

language that involves describing the basic

equations for that particular component. Using

physical modeling tools, the model of the

motion control system can be created directly

from the schematic in Figure 7 without deriving

any equations. The block diagram for the

physical model of the motion control system is

shown in Figure 9. Not shown in the figure are

additional sensor and actuator blocks that you

can connect to the physical components to

transition from the signal domain of Simulink to

the physical domain of Simscape and vice-versa.

These translation blocks allow you to apply the

control system defined in Simulink to the

physical model in Simscape in a fully integrated

environment.

Figure 9: Physical modeling representation of the motion
control plant using Simscape blocks.

Another option to obtain an accurate model of

the mechanics of the motion system is provided

by SimMechanics™. This method is especially

useful if a CAD design of the system already

exists. Using a CAD translator tool, which is

available for a growing number of CAD

environments, it is possible to automatically

create a model of the rigid bodies in a system

and connect them through appropriate joints.

This saves even more time in developing the

model and can also provide an animated

visualization of the plant. Figure 10 shows an

example of this for the motion control system

considered here. After importing the CAD file,

we can add a torque actuator and sensors to

connect it to our control system. We also need

to add damping to the two bearings (b1 and b2)

as well as the stiffness and damping of the

transmission shaft (b12 and k).

Figure 10: Visualization of the motion control system
after importing from a CAD environment.

We have now looked at three different

methods for creating a first-principles model:

deriving differential equations, modeling using

physical components, and importing from an

existing CAD design. In all of these methods we

are using parameters, like stiffness and

damping, which correspond to real physical

properties. How do we find the values for these

parameters?

In some cases these values could come from a

data sheet, they could come from direct

measurements that have been made on the

Presented at ESC Boston 91806v00 11/2009

system, or they could simply be guesses. The

values provide a starting point for design work,

but may not have the accuracy that is necessary

for finely tuning a control loop. Once the

physical plant is available, it may be helpful to

use measurements from the system to validate

the model. This ensures that your model

provides a reasonable representation of the

physical system and in the case of a disparity

can be used to tune the parameters to provide

a closer match.

This process, known as parameter estimation,

involves acquiring data from the actual plant,

choosing the parameters to estimate (specifying

a bound if desired), and then using optimization

algorithms to minimize the error between the

simulated and measured responses. Using tools

such as Simulink Design Optimization™ this

process is largely automated.

In our example, we know all the parameters

from our knowledge of the system except the

stiffness and damping of the transmission shaft.

So we can use measured data (similar to the

data we used for data-driven modeling) to

estimate those two parameters. We pick an

initial guess and then use an optimization

algorithm to find values of the two parameters

to minimize the error between the simulated

and measured data. After this process, we find

the following values for the unknown

parameters:

𝑏12 = 2.0 × 10−7 N∙m∙s rad

𝑘 = 1.3 × 10−2 N∙m rad

Like the data-driven modeling approach, we

now have a model of our plant that closely

matches its actual behavior. But in addition, we

have gained some insight into the physical

properties of the plant. We could use this

model to investigate how changes to the

physical plant would affect our system

response. For example, we could try increasing

the stiffness of the transmission shaft to

improve the positional accuracy of the load

rather than changing the control algorithm.

III. Control Development
Once a plant model has been developed, the

motion control algorithm can be designed or

optimized. We will look at how to develop two

different types of control algorithms. First we

will discuss classic control algorithms where

information from the sensors on the plant is fed

back and used to calculate an actuator value

based on a differential or difference equation.

We will also investigate developing logic, or

supervisory, controllers. These controllers

usually consist of some heuristic algorithm that

makes a decision based on time or measured

data. For example, it may be used to schedule

different motion profiles over the course of a

production run. In our case, we will develop

some logic to look for faults in our system and

take an appropriate response.

Classic Control

Designing control systems involves first laying

out the general control structure. Working in a

graphical simulation environment makes it

trivial to quickly try different control topologies

by simply rerouting lines in the diagram. For

example you might have an idea that adding a

new sensor would provide valuable feedback to

your controller. You can quickly test your theory

by making that additional connection and

evaluate the result before making the

investment in the actual sensor.

In our example, the control structure already

exists and we are just interested in improving it,

so the first step is to model the existing

controller. It consists of both a feed-forward

controller and a feedback control. The feed-

Presented at ESC Boston 91806v00 11/2009

forward control calculates a nominal voltage to

send to the motor based on the desired

trajectory (4). Feedback control on the other

hand relies on measurements of the load

position to adjust the voltage going to the

motor and can compensate for disturbances

such as a varying load. For the purposes of this

example, we will focus on how to improve the

current feedback control system and leave the

feed-forward system as is.

The original feedback control consists of a single

discrete PD controller running at a sampling

rate of 500 Hz (5). The input to the controller is

the error in the position and the output is a

commanded voltage which is added to the feed-

forward voltage. Given this information about

the original structure of the feed-forward and

feedback controllers, we can construct a

complete closed-loop model of our system as

shown in Figure 11.

Figure 11: Model of the complete closed loop system.

With this complete system model we can now

visualize the change in performance as the

controller design is altered. While tuning the

closed-loop response, we will look at the

response of the load position with a step

change in the reference position, disabling the

feed-forward control. First we will investigate

adding a notch filter to the feedback path to

reduce the effect of the resonance peak we

discovered while modeling the system, then we

will optimize the PD controller gains to further

improve the performance of the system.

Figure 12: Interactive open-loop bode plot used for
designing the controller.

To interactively add complexity or design the

structure of a controller from scratch, we can

use control design tools that will analyze the

model and provide useful information for

quickly trying different control strategies. In our

case, to add a notch filter, we can first add an

arbitrary transfer function that will ultimately

represent the filter. Using Simulink Control

Design™ we can then display a plot of a

linearized version of the open loop system

response as shown in Figure 12. We have

chosen to use a bode plot, but the root-locus or

Nichols plot of the open-loop system could also

be displayed.

We can see the resonance peak that is limiting

the feedback gain of the system. From within

this plot, we can interactively modify our

controller by adding poles, zeros, or different

filters. As soon as these components are added,

the open loop bode response will change to

Presented at ESC Boston 91806v00 11/2009

reflect the new design. At the same time, you

can see the resulting change in the closed-loop

system response to understand the impact the

changes have on the full system. In our case, we

place a notch filter centered right on the

resonance peak which lowers the magnitude of

the peak and reduces the oscillation in the

closed-loop step response of the system.

Figure 13: Open-loop bode plot with the notch filter
interactively added.

The updated open-loop bode plot is shown in

Figure 13. The red circle is the location of the

notch filter and the black diamonds represent

the width of the filter.

After adding the notch filter, the closed-loop

step response has reduced oscillations

associated with the resonance mode as shown

in Figure 14.

Figure 14: Closed-loop step response before and after
adding the notch filter.

Design Optimization

Next we can try to further improve the step

response by tuning the PD controller gains. We

could do this in a similar manner as the notch

filter design, but as an example we will use a

different approach based on numerical

optimization. Since we are in a simulation

environment, we can run many simulations

quickly and use optimization algorithms to

adjust the parameters to meet a specific goal.

We can define the goal as a time-based

requirement for one or more signals in the

model. In our case we set a specific set of step

requirements for the position signal which can

be displayed as boundaries on the step

response plot as shown in Figure 15.

We can then pick the parameters we want to

tune. In our case, we pick the P and D gains of

our feedback controller. Keep in mind,

however, that these parameters could be any

part of the model. So with a first-principles

model, you could also tune physical parameters

to help design parts of the plant itself in

addition to the controller.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

A
n

g
le

 (
ra

d
)

Before notch

After notch

Presented at ESC Boston 91806v00 11/2009

Figure 15: Step response before and after tuning the PID
gains with the performance requirements indicated.

Figure 16: Position and error in position for a move with
the original controller and the improved design.

After running the optimization routine you can

see in Figure 15 that the step response has

been improved and now lies within the design

requirements. Now that we have completed the

feedback controller design we can simulate the

behavior of the complete system for the desired

point-to-point trajectory already considered in

Figure 2. The result, given in Figure 16, clearly

shows the position error is well within the

desired range and that the settling time has

been reduced to around 0.5 seconds allowing

the entire cycle time to be reduced.

Logic Control

In addition to classical control, many motion

control applications will also have some logic-

based control. Logic control usually changes

what the system is doing based on some event.

It could be a certain amount of time passing, an

alarm going off, or an object reaching a certain

position. Once this event happens, the system

moves into a different state, perhaps initiating a

new motion, going into a shutdown mode, or

energizing a different part of the machine.

Figure 17: State chart defining the error detection logic in
the motion control system.

A natural way to describe this type of logic is to

draw the different states the system can exist in

and the transitions that cause the system to

move from one state to another, known as a

state chart. Modern simulation tools allow

components in the system to have behavior

defined directly by a state chart as shown in

Figure 17. This chart, built using Stateflow®,

represents the fault-detection logic for our

motion control system. It starts in a normal

running state, but if the position goes outside of

a safe limit, it switches into a warning state. If

the position does not return to the safe limit

within 5 seconds, we transition into an

0 0.5 1 1.5 2
-50

0

50

100

150

A
n

g
le

 (
ra

d
)

0 0.5 1 1.5 2

-2

0

2

Time (s)

E
rr

o
r

(r
a

d
)

Original

Final

Presented at ESC Boston 91806v00 11/2009

emergency stop state. Alternatively, if the

position goes too far outside the range it will

switch to the emergency stop state

immediately.

The system can take different actions

depending on what state you are in. In our case,

for example, when in the emergency stop state,

we will use a backup control system and

command the position to a safe location.

Now this is just a simple example, but in more

complex cases defining this logic in a state chart

makes it easier to understand than pages of

written logic statements. Another advantage is

that while the simulation is running, the state

chart is highlighted to indicate the current state

and the transitions that are taken. This allows

one to easily visualize the logic and understand

why the system is behaving in a certain way.

Ultimately it makes it easier to identify and

correct problems in the control logic.

IV. Testing
In addition to providing an environment for

quickly and interactively designing motion

control algorithms, a simulation environment

also provides capabilities for thoroughly testing

the motion control system at several different

levels to help ensure that errors are caught as

soon as possible and before fixing them

becomes expensive.

Running Simulations

The first stage of testing can be done right in

the simulation environment. By simulating the

system model, the requirements can be

validated very early in the development

process. In this case study we had a valid set of

performance requirements to meet – but what

if the speed and acceleration requirements

were 50% faster, how long would that have

taken to determine that the motor and

controller would not be able to meet the

demands being placed on them? Simulation

would quickly highlight this and a determination

to relax the requirements or change in the

motor design would be needed.

Once the control design is complete, a range of

different test scenarios can be run by changing

the inputs or the parameters of the simulation.

This allows testing of different scenarios or

variations in the plant parameters. For example,

we can run the simulation for a range of

stiffness and damping values given a certain

distribution to ensure the motion system meets

the performance requirements given

manufacturing variation in the transmission

shaft.

Rapid Prototyping

Once the design has been tested in simulation,

you may then want to ensure the control

algorithms work with the actual plant, or a

physical prototype of the plant. Rapid

prototyping is testing the control algorithms in

real-time with the physical plant hardware and

can be done before deciding on the final

controller platform.

To test the design in real-time, we use an

extension of Simulink called xPC Target™, which

enables the use of common PC-compatible

computer hardware for real-time testing. In

Simulink, the plant model is exchanged for

blocks that represent connections to the actual

plant hardware. For example, one can use

analog input and output blocks for a particular

data acquisition card to represent analog signals

going to and coming from the plant. Once that

change has been made, the model can be

compiled, downloaded and run in real-time on

that separate target computer, assuming it has

the appropriate data acquisition or

communication cards installed. Those cards are

Presented at ESC Boston 91806v00 11/2009

connected to the actual plant so that the model

running on the target drives it directly.

While running the controller in real-time on a

target computer there can still be a connection

to the development computer, or host, so that

the signals on the target can be monitored and

parameters can be adjusted. With this approach

you can use the host machine to run through

the same tests that were used in simulation

directly on the plant hardware to ensure that

any approximations or simplifications made

when modeling the plant do not have a

significant impact on the system performance.

If necessary, controller gains can be further

tuned on-line until the performance is

acceptable.

Figure 18: Plant model replaced with a hardware
interface for rapid prototyping.

In our motion control example, we use a

Diamond MM-32 card to send the voltage

command to the motor and a RTD® DM6814

encoder card to read the motor and load

positions. In the simulation environment, the

voltage signal from the controller is connected

to the appropriate analog output block and the

encoder input block outputs the measured

position signal. We also insert signal

conditioning blocks to convert the data types

and scale the signals as necessary as shown in

Figure 18.

After making changes to the model, we compile

and run it on the xPC Target™ platform on a PC-

104 form factor PC. The analog output and

encoder cards in the target PC are connected to

the motion control system shown in Figure 3.

From the host PC, we can then send commands

to execute the control algorithm and run

through a series of tests, logging the data to

ensure that it meets our original performance

goals. Figure 19 shows the response of the

actual system compared to the predicted

response from the simulation shown in Figure

16. Note that there are differences, but the

simulated response was also a good prediction

of the actual system behavior.

Figure 19: Plot of the position and error in position when
making a point to point movement; measured from the
actual system using Rapid Prototyping.

V. Next Steps

Implementation

In addition to being used for designing and

testing the controller, the system model that

has been developed in the simulation

environment can serve as an executable

specification for software engineers to refer to

as they develop the embedded code. Rather

than having only a textual description of the

algorithm, the model can be run in various

different scenarios so the original intent cannot

0 0.5 1 1.5 2
-50

0

50

100

150

A
n

g
le

 (
ra

d
)

0 0.5 1 1.5 2

-2

0

2

Time (s)

E
rr

o
r

(r
a

d
)

Simulated

Measured

Presented at ESC Boston 91806v00 11/2009

be misinterpreted. More than that, because the

model can represent a complete description of

the system, the process of creating the

embedded code can be automated. This allows

algorithmic changes to be made at the model

level and then immediately implemented on the

target hardware without a lengthy coding cycle.

It also means that the same model can be

deployed to different target platforms so that

the decision on what platform to adopt can be

made later in the design cycle. Additionally this

allows for easier upgrades to a different

platform in the future without having to re-

code the algorithms.

HIL

After implementing the control algorithms onto

the final platform, it may be helpful to test the

final controller before connecting it to the

actual plant if, for example, an error in the

controller could cause costly damage to the

system or could pose a safety threat. Rather

than developing a new tool, the plant model

developed earlier can be reused to now test the

final control system.

Qualifying the production controller with a

simulated version of the plant running in real-

time is known as hardware-in-the-loop (HIL)

testing. The workflow is similar to rapid

prototyping except rather than the controller,

you run the plant model on a PC in real-time. By

using HIL testing, you can verify the production

controller meets the executable specification,

and underlying requirements not only across its

full operating envelope but even its error

handling software. For example, the fault

detection logic could be fully tested without

risking the actual plant. In the end you gain

greater confidence that the controller will work

as intended.

VI. Conclusions
It is now common practice for mechanical and

mechatronic designers to make use of a

computer-aided design (CAD) tool when

designing a new mechanical component. It is

generally seen as a necessity to prevent small

mistakes from becoming very costly when they

are not found until the actual assembly of the

design. To further reduce the occurrence of

(human) errors, there is also a growing use of

automatically generated code to machine

individual parts of the design on Computer

Numerical Controlled (CNC) machines.

Model-Based Design is the extension of those

same principles to the functional behavior of a

complete mechanical, or more often a

mechatronic design. It specifically aims to

reduce the risk of not meeting the functional

requirements by enabling early and continuous

verification throughout the entire design

workflow. Furthermore, it provides an

environment that is rich with numerical and

graphical analysis and design tools that

stimulate innovation and cooperation within

design teams.

All this is combined with automatic code

generation capabilities for real-time testing of

the design and a growing acceptance of

embedded software designers that code

generation technology is not only a viable way

to deal with the exponential growth in

complexity and size of embedded software, but

also becoming sufficiently powerful and

efficient for actual production use.

This paper has illustrated these advances using

an admittedly simple, but realistic motion

control system, showing a range of software

technologies in modeling and control design

that are now readily available ‘off the shelf.’

The initial application of Model-Based Design on

Presented at ESC Boston 91806v00 11/2009

a real project within a design team will require

investment of time and money, as well as

willingness from those involved to do things

differently. There are, however, many reported

cases where this approach has approximately

cut development time in half, and where

Model-Based Design has been successfully

applied company-wide (6).

VII. Acknowledgement
This paper made use of the 2009a release of the

Model-Based Design environment of The

MathWorks (7). The specific tools needed to

reproduce the results in this paper are:

MATLAB®, Simulink®, System Identification

Toolbox™, Simscape™, SimMechanics™, Control

System Toolbox™, Simulink® Control Design™,

Simulink® Design Optimization™, Real-Time

Workshop®, and xPC Target™. The models and

scripts to reproduce most of the results in this

paper are publicly available through The

MathWorks’ user community:

www.mathworks.com/matlabcentral (search

for motion control demo).

VIII. References
1. Aberdeen Group. System Design: New

Product Development for Mechatronics.

Boston : s.n., 2008.

2. NASA. Return on Investment for Independent

Verification & Validation. [Presentation] 2004.

3. Ljung, L. System Identification: Theory for the

User. Upper Saddle River, NJ : PTR Prentice Hall,

1999.

4. Lambrechts, P., Boerlage, M. and Steinbuch,

M. Trajectory planning and feedforward design

for electromechanical motion systems. Control

Engineering Practice. 2004, Vol. 13, 3.

5. Franklin, G.F, Powell, J. D. and Workman, M.

L. Digital Control of Dynamic Systems. s.l. :

Addison-Wesley, 1980.

6. The MathWorks, Inc. User Stories - Industrial

Automation and machinery . The MathWorks

Web site. [Online] 2009.

http://www.mathworks.com/industries/iam/us

erstories.html.

7. —. MATLAB & Simulink Release Notes for

R2009a. Natick, MA : The MathWorks, Inc.,

2009.

http://www.mathworks.com/matlabcentral

