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ABSTRACT 

Model-Based Design with production code generation has been extensively utilized throughout the automotive software 
engineering community because of its ability to address complexity, productivity, and quality challenges. With new 
applications such as lane departure warning or electromechanical steering, engineers have begun to consider Model-
Based Design to develop embedded software for applications that need to comply with functional safety standards such 
as ISO 26262.  

For the development of high-integrity in-vehicle software, ISO 26262 is considered state-of-the-art or generally accepted 

rules of technology (GART) [Fal02, Lov06].  Developers of in-vehicle software need to understand and implement the 

standard‘s requirements pertaining to software development. Due to the widespread utilization of Model-Based Design to 

develop automotive E/E systems, it is of particular importance to set-up ISO 26262 compliant Model-Based Design 

processes and tool chains.  

This paper discusses a verification and validation workflow for developing in-vehicle software components which need to 
comply with ISO 26262-6 using Model-Based Design. It discusses tool support by using a Simulink® family tool chain for 
Model-Based Design as an example. 
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INTRODUCTION 

The increasing application of embedded software in passenger cars has resulted in a staggering complexity that has 
proven difficult to negotiate with conventional design approaches and processes. In addition, more and more projects 
need to comply with functional safety standards, because modern software-based electronic control units (ECUs) control 
or interact with critical systems such as brakes and steering.  

Development approaches and processes play a decisive role in addressing the complexity, productivity, and quality 
challenges. Because of its ability to address these challenges, Model-Based Design has been extensively used 
throughout the automotive software engineering community. More recently, automotive OEMs and suppliers have begun 
to consider and adopt Model-Based Design for the development of embedded software for high-integrity applications that 
need to meet requirements of the ISO 26262 standard.  

ISO 26262 ―Road Vehicles - Functional Safety‖ [ISO 26262] is the adaptation of IEC 61508 [IEC 61508] to comply with 
needs specific to the application sector of electric / electronic systems (E/E systems) within road vehicles. This adaptation 
applies to all activities during the safety lifecycle of systems composed of electrical, electronic, and software elements that 



 

 

provide safety-related functions. ISO 26262-6 ―Product development: software level‖ [ISO 26262-6] is concerned with 
software development, verification, and validation. 

Model-Based Design tools such as Simulink and Stateflow® [Simulink] can be used throughout multiple phases of the 
software life cycle. Model-Based Design enables early simulation and testing of the functional behavior as well as 
automatic code generation for production systems. Production code generation within Model-Based Design has replaced 
manual coding in various vehicle domains and generated code is increasingly being deployed in high-integrity applications 
[JSB+08, FMC08].  

The use of Model-Based Design for high-integrity applications requires extra consideration and rigor because additional 
requirements imposed by functional safety standards such as ISO 26262 have to be met. To improve quality and 
functional safety, models and generated code should be subjected to a combination of quality assurance measures. 
Further, compliance with ISO 26262 needs to be demonstrated.  

This paper discusses how Model-Based Design and associated verification and validation techniques can be leveraged to 
help develop automotive applications that comply with ISO 26262. It covers the mapping of selected ISO 26262-6 
objectives onto Model-Based Design. 

A WORKFLOW FOR VERIFICATION AND VALIDATION OF MODELS AND GENERATED CODE 

ISO 26262 calls for application-specific verification and validation regardless of the tool chain and the development 
process used. When using Model-Based Design with production code generation, application-specific verification and 
validation needs to answer the following questions: 

 Does the model implement its (textual) requirements? 

 Does the object code to be deployed in the ECU implement the design embodied in the model?  

To facilitate a seamless use of Model-Based Design in the context of ISO 26262, a reference workflow that describes the 
verification and validation activities necessary for ISO 26262-6 compliance [Cert Kit] has been developed by MathWorks 
and audited by the certification authority TÜV SÜD. The ISO 26262 workflow is derived from a similar reference workflow 
for the generic IEC 61508 standard [Con08, Con09]. Following the suggested division of the verification and validation 
activities for applications developed using Model-Based Design and production code generation, the workflow can be 
divided into the following steps (Fig 1):  

1. Design Verification: Demonstrate that the model satisfies its specification and does not contain unintended 
functionality. 

2. Code Verification: Show that the generated code matches the model and does not contain unintended 
functionality.  

Utilizing similar workflows for IEC 61508 and ISO 26262 streamlines the software development activities of companies 
that need to comply with different standards for different projects. 



 

 

 

 M1  Reviews and static analyses at the model level 

 M2  Module and integration  testing at the model level 

 C1  Back-to-back comparison testing between model and code 

 C2  Measures to prevent unintended functionality 
 

Fig. 1: Reference workflow for application-specific verification and validation of models and generated code 

DESIGN VERIFICATION —  VERIFICATION, VALIDATION, AND TESTING AT THE MODEL LEVEL  

The goal of design verification is to gain confidence in the model that is being used for production code generation. 
Design verification takes place at the model level, before the code is generated.  

The design verification part comprises a combination of reviews, static analyses, and comprehensive functional testing 
activities at the model level [Con08, Con09]. These activities together help provide confidence that the design satisfies the 
associated requirements, does not contain unintended functionality and complies with defined modeling guidelines. 

[M1] Reviews and Static Analyses at the Model Level 

Model components, i.e. model subsystems considered as modules, should be reviewed. If feasible, these manual model 
reviews should be supported by automated static analyses of the model [Beg07].   

Modeling guidelines should be used and adherence with the guidelines should be assessed. Modeling constructs that are 
not suited or not recommended for production code generation should not be used. In addition, modeling guidelines 
addressing specific ISO 26262 objectives should be employed. 

[M2] Module and Integration Testing at the Model Level 

Model components should be functionally tested using test cases systematically derived from the software requirements 
specification. The objective of module testing is to demonstrate that each model component performs its intended function 
and does not perform unintended functions.  

As model component testing is completed, components can be integrated. The model integration stages shall be tested in 
accordance with the dedicated integration tests. These tests should show that all model components interact as specified 
to perform their intended function and do not perform unintended functions. 
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A more detailed discussion on testing at the model level can be found in [CF09]. 

The result of the design verification process is a golden model, i.e., a validated and verified, well-formed model that 
implements the requirements and does not contain unintended functionality. The golden model serves as a reference for 
the subsequent code verification activities.  

CODE VERIFICATION —  VERIFICATION, VALIDATION, AND TESTING AT THE CODE LEVEL  

A combination of verification, validation, and testing activities at the code level shall demonstrate that the semantics of the 
golden model is being preserved during code generation, compilation, and linking. Furthermore, it needs to be shown that 
no unintended functionality is being introduced during code generation.  

[C1] Back-to-back Comparison Testing Between Model and Code  

The reference workflow utilizes translation testing [Con09, Con11], i.e. translation validation using systematic testing, to 
demonstrate numerical equivalence between the model and the generated C code. Translation testing in this context 
means that each model-to-code-translation (i.e. a run of the code generation tool chain) is augmented with a back-to-back 
testing phase (cf. ISO 26262-6, sections 9 and 10) to verify that the executable compiled from the generated C code 
(object code) matches the golden model.  

Back-to-back testing for numerical equivalence is well suited to automation, because the expected outputs for the test 
vectors do not have to be provided [Ald01]. Detailed discussions of back-to-back testing procedures are available in 
[SM05, SCD+07].  

[C2] Measures to Prevent Unintended Functionality 

Back-to-back testing alone may not be sufficient to demonstrate the absence of unintended functionality in the generated 
source code. Therefore, back-to-back testing to assess numerical equivalence needs to be augmented with additional 
measures to demonstrate the absence of unintended functionality. This second activity in the code verification process 
shall demonstrate that the generated C code does not perform unintended functions, i.e., the code does not contain 
functionality not embodied in the model.  

Alternative techniques are available to achieve this objective including (a) model versus code coverage comparison and 
(b) traceability analysis. These techniques serve the purpose of demonstrating structural equivalence between the model 
and the source code. If model versus code coverage comparison is being used to show the absence of unintended 
functionality, model and code coverage are measured during back-to-back testing and compared against each other. 
Discrepancies with respect to comparable coverage metrics need to be assessed. Alternatively, a traceability analysis can 
be performed to demonstrate that all parts of the generated C source code can be traced back to the golden model. In this 
case the generated code is subjected to a limited review that exclusively focuses on traceability aspects. Non-traceable 
code shall be flagged and assessed. Generation of a traceability matrix to aid traceability analysis is provided in the IEC 
Certification Kit [Cert Kit]. 

MAPPING ONTO ISO 26262-6 AND COMPLIANCE DEMONSTRATION  

The design and code verification activities described in the reference workflow provide core activities to implement 
requirements of ISO 26262-6 when utilizing executable models and generated code as part of the software life cycle. 
These activities need to be augmented with additional measures to address other objectives of the ISO 26262 standard.   

Fig. 2 and 3 map the reference workflow and the corresponding activities in ISO 26262-6 onto each other. Fig. 2 provides 
a mapping between the ISO 26262-6 design phase activities and the software development artifacts from the reference 
workflow. Fig. 3 maps design phase verification and test phase verification activities of the standard onto their 
counterparts in the reference workflow.    



 

 

 

Fig. 2: Mapping of software development artifacts and activities 

 

 

Fig. 3: Mapping of software verification, validation, and testing activities 



 

 

Examples for carrying out the above mentioned verification, validation and testing activities can be found in [Con11]. 

When using the reference workflow, compliance demonstration with the applicable requirements of ISO 26262-6 can be 
facilitated by  

 Checklists that document the realization of the workflow activities and reference the work products created and 

 Artifact management systems supporting the compilation of items for the safety case and traceability between 
them. 

Fig. 4 illustrates the checklist-based compliance demonstration process and the management of associated artifacts with 
the Artifacts Explorer [CertKit]. 

 

Fig. 4: Artifact management tool and checklist-based compliance demonstration (example) 

 

SUMMARY AND CONCLUSION 

ISO 26262-6 is the main functional safety standard with respect to software development for high-integrity in-vehicle 
applications. It defines requirements and constraints for software development, verification and validation processes. 
These requirements apply to both Model-Based Design with code generation and traditional software development. 
However, implementing these requirements within Model-Based Design requires special consideration. To aid this 
process, the author discussed a reference workflow for Model-Based Design and tool considerations to address the 
objectives of ISO 26262-6.  

The proposed workflow for verification and validation of models and generated code can be viewed as instantiation of the 
verification and validation requirements outlined in ISO 26262-6. This instantiation exploits the advantages of production 
code generation as an integral part of Model-Based Design. 

The reference workflow can also help to meet the tool qualification requirements of ISO 26262-8 [ISO 26262-8, section 
11]. In particular, it can provide the foundation for a pre-qualification of the Model-Based Design tools used in the 



 

 

implementation of this workflow [CSM11, HKW+11]. Such a procedure was used for the in-context certification by TÜV 
SÜD of the Embedded Coder code generator and other tools for Model-Based Design.  

A detailed workflow description, together with a compliance demonstration template, and templates for the ISO 26262-8 
tool qualification work products are made available as part of the IEC Certification Kit [Cert Kit]. The kit also contains 
evidence of the independent assessment carried out by TÜV SÜD (certificates and corresponding certification reports), 
the artifacts explorer, and the traceability matrix generation tool.  
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