} MathWorks

Navigate to Root Cause of Defect

Through the Polyspace® Bug Finder™ user interface, you can navigate to the root cause of a defect in your source
code. If you select a result on the Results List pane, you see the immediate location of the defect on the Source pane.
However, the defect can be related to previous statements in your source code.

For instance, a Non-initialized variable defect appears at the location where you read a noninitialized variable.
However, it is possible that you initialized the variable previously. For instance, the initialization occurred in a
branch of a previous if statement and the variable is noninitialized only if that branch is not entered.

Follow Code Sequence Causing Defect

Often, the Result Details pane shows the events related to the defect. To see the code statement that the event
describes, click the event.

For instance, if an Array Access Out of Bounds error occurs in a loop, the Result Details pane shows updates to the
array index that occur inside the loop. The update statements might physically occur in your code before or after the
array access, but because the statements occur in a loop, they are related to the array access.

[] variable trace dataflow.c f bug_noninitvar()
[=] Result Review

Severity [v] \Enfer comment here...

Status [-

! Mon-initialized variable (Impact: High) ':.?.;'
Local variable 'value' may be read before being initialized.

Event File Scope Line
1 Declaration of variable "walus' dataflow.c bug_noninitwar) &9

2 Mot entering if skatement (if-condition False) dataflow.c bug_noninitvar) 92
|- Mon-initialized variable dataflow.c bug_noninitvar() 96

On the Source pane, the statements are highlighted in blue and the corresponding line numbers outlined in boxes.

On the Result Details pane, you can select the Variable trace box, if available. The event sequence expands to show
more events related to the defect. The statements that the additional events describe are highlighted in light blue on
the Source pane.

mathworks.com

} MathWorks

Accelerating the pace of engineering and science

Navigate to Identifier Definition

Often, to diagnose a defect, you have to navigate to an identifier definition. On the Source pane, right-click the iden-

tifier name. Select Go To Definition.

For instance, the C++ defect Object slicing appears at the location where you pass a derived class object by value to a
function. The function expects a base class object as parameter. To diagnose this defect, you can navigate to the base
and derived class definitions.

To navigate to the derived class definition starting from the defect location:
1. Right-click the derived class object name and select Go To Definition.
2.1In the derived class object definition, right-click the derived class name and select Go To Definition.

If a definition is not available to Polyspace, selecting the option takes you to the declaration. For instance, Polyspace
Bug Finder displays results in real time as they are produced. The software displays results on some files while others
are not yet analyzed. In your results, if you select a function and then select Go To Definition, and the function defi-

nition is not yet analyzed, selecting the option takes you to the function declaration.

Navigate to Identifier References
Often, to diagnose a defect, you have to see the locations where an identifier is used.

For instance, an if statement shows the Dead code defect. You want to understand why the variable that controls

entry to the if statement has a certain set of values. Therefore, you want to see previous assignments to that variable.
To navigate to previous locations where an identifier is used:

1. Right-click the identifier name and select Search For All References.
The search results appear on the Search pane with the current location highlighted.

2. Click each search result, starting backward from the highlighted result.

3. The option Search for All References is not available in some cases. For instance, if you right-click a C++ virtual
function, this option is not available.
Use one of the following options to search for occurrences of the identifier name:

o Search For Identifier _ name in Current Source File
o Search For Identifier _ name in All Source Files

4. If reviewing a defect requires deeper navigation in your source code, you can create a duplicate source code
window that focuses on the defect while you navigate in the original source code window.

a. Right-click on the Source pane and select Create Duplicate Code Window.
b. Right-click on the tab showing the duplicate file name and select New Vertical Group.

c. Perform the navigation steps in the original file window while the defect still appears on the
duplicate file window.

d. After reviewing the defect, click the |£§| button on the Results List pane to return to the defect location

in the original file window. Close the duplicate window.

© 2017 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

mathworks.com

http://www.mathworks.com/trademarks

