ROOTS — Of Polynomials, That Is

Laguerre’s method does not perform as promised

roots of polynomials. Both of them have interesting his-

tories, and interesting numerical properties. But we now
believe one of them is seriously flawed. We are recommending
that it NOT be used. I'd like to explain how and why we came
to this conclusion. But first some background.

MATLAB 3.5 has two different methods for finding the

Let’s generate two simple test polynomials, pfx) and g(x),
with the MATLAB statements

p = poly([1 2 3])
and
g = poly([2 2 2]).
We get
p =
1 -6 11 -6
q -
1 -6 12 -8

The elements in p are the coefficients in the cubic
plx)=x" - 65+ 11x-6

The equation pfx) = O hasrootsatx =/, x= 2, and x = 3.

The elements in q are the coefficients in the cubic
gix)=x"-6x"+ 12x- 8

The equation g(x) = 0 has a triple root at x = 2.

What happens to the roots when we perturb the polynomial?
Let’s focus on the root x = 2 and subtract a small quantity, &,
from the constant term in the polynomial. The perturbed
equation

px)=(x-1)(x-2)(x-3)=¢
can be written
x=2+¢€/((x-1){x-3))

Near x = 2 the denominator on the right is nearly equal to -1, so
the resulting perturbation in the root is close to -£; it is certainly
the same size as €.

On the other hand, the perturbed equation

glx)=(x-2f =¢
has to be written
x=2+ &R

The size of the perturbation in x = 2 is the cube root of & If €1s
MATLAB’s IEEE arithmetic roundoff error, 2%, then x = 2 is
changed to x = 2.00000605545445, which hardly appears to be a
single rounding error.

" More than this happens. When we perturb p(x) by a small
amount, its roots remain real. But almost any perturbation of

gfx) will cause two of its roots to move into the complex plane.

This is a general phenomenon. If a polynomial has a root of
multiplicity 77, then most perturbations of size £ will cause the
root to be perturbed by amounts of size €. And, if # is odd,
complex roots are almost certain to appear. Moreover, this has
nothing to do with any particular root finding method. Itisa
property of the roots themselves, not of some algorithm.

What does all this have to do with matrices? The connection
is through the companion matrix. If p is a vector with #+1
elements representing the coefficients in a polynomial of degree
#, then the matrix

C = [-p(2:n+1)/p(1); eye(n-1,n)]

is the companion matrix associated with p. For example, with

p = [1 -6 11 -61,
C = [6 -11 6

1 0 0

0 1 0]

The characteristic polynomial of the companion matrix,
detf A I - CJ, is simply p(A). The eigenvalues of ¢ are the roots of
p. Perturbations of size € in the elements of € cause an eigen-
value of multiplicicy to be perturbed by the #-th root of &

Which brings us to MATLAB’s original polynomial root finder,
roots(p). This is a short M-file that simply sets up the
companion matrix and uses the built-in eig function to find its
eigenvalues. We started using a matrix eigenvalue routine to
compute polynomial roots with “classic” MATLAB 12 years ago.
We did so for three reasons:

(1) The code is short; we get polynomial roots almost for free
using code we already have.

(2) It emphasizes the power of modern algorithms for matrix
computation. Before the 1970s, polynomial root finders
were used to compute matrix eigenvalues. Now, we've
turned the tables.

(3) The algorithm is reasonably accurate and robust.

But this approach is not the best possible. For a polynomial
of degree , it uses order #° storage and order /' time. An algo-
rithm designed specifically for polynomial roots might use order
storage and #° time. And the roundoff errors introduced corre-
spond to perturbations in the elements of the companion matrix,
not the polynomial coefficients. We don’t know of any cases
where the computed roots are not the exact roots of a slightly
perturbed polynomial, but such cases might exist. t

FROM THE MATHWORKS

NEWSLETTER —

SPRING 1 991

For our sample polynomial, ¢fx), with a triple root at
y=2,roots(q) computes

2.00000957563204 + 0.00001658568659i
2.00000957563204 - 0.000016585686591
1.99998084873593

You can see the errors of size € in both the real and imagi-
nary parts. ‘These errors correspond to roundoff errors in the
original polynomial coefficients, but, still, we would somehow
prefer to see three exact 2s.

So, a second polynomial root finder, roots1, was introduced
into MATLAB several years ago. It uses Laguerre’s method and
is based on code in the popular book Numerical Recipes by W. H.
Press etal. Our MATLAB User’s Guide says “roots1 performs
the same function as roots, but gives more accurate answers
when there are repeated roots.” Sure enough, roots1(q)
gives three exact 2s.

That’s not the end of the story. At some point, a line of code
was dropped from roots1. The statement

b = bsave;

may be missing just after the comment Polish each root.
So we have looked more carefully at roots1. Even with the
missing line restored, it does not always deliver on its promise of
more accurate roots.

Multiplying all the coefficients of a polynomial by the same
scale factor should not change its roots. But it does lead to differ-
ent roundoff errors, and so to different values for the computed
roots. We find,

roots1(q/3) =
1.99999994838086
2.00000005161914
2.00000000000000

and

rootsi(q/5) =

2.00000000000000 + 0.000000001205211

2.00000000000000 - 0.000000040941641

2.00000000000000 + 0.000000039736431

The errors in the computed results are comparable in size to
those produced by roots, and are consistent with the perturba-

tion theory for a multiple root. But there is a disturbing lack of
symmetry. The roots function finds points on a small circle in

the complex plane centered at the exact answer; roots1 does

not.
It gets worse. Here is another example.

p = [20 -181 596 -906 596 -181 20]
This represents a polynomial of degree 6 whose roots are
X = [4 2+1 2-1 1/4 1/(2+1) 1/(2-i)]

There are no multiple roots. The roots are not badly condi-
tioned and roots(p) computes them to full accuracy. But the

polynomial does have the special property that its roots come in
reciprocal pairs, x; and //x,. This somehow causes roots1, with
or without the missing line replaced, to produce completely
unacceptable results. We will skip the gory details. We haven’t
pursued the matter far enough to understand exactly why
roots fails. If anybody wants to investigate further, or to see
if the Numerical Recipes code also fails, we would sure like to hear
about it. We suspect there will not be an easy fix.

Any roundoff error in the evaluation of a polynomial must
lead to perturbations in its computed roots that are roughly the
same size as those produced by our eigenvalue-based roots
function. If, like our example ¢fx), the polynomial happens to
have integer coefficients, and an integer-valued multiple root,
then a routine like roots1 may be able to avoid roundoff error
altogether and compute the multiple root exactly. But thisis a
very special situation, and is insufficient justification to include
the routine in MATLAB.

Oh, by the way, rootst is also very slow. So, we recom-
mend that you remove it, and Laguer, from your MATLAB
toolbox. We intend to remove them from MATLAB 4.0.

t This note was written in 1991. Since then Alan Edelman and
Lloyd Tretethen have written papers showing that the roots
function is numerically OK- the computed eigenvalues of the
companion matrix are always the exact roots of a slightly perturbed
polynomial.

Thus is a general phenomenon.
If a polynomial has a root of
multiplicity m, then most per-
turbations of size € will cause
the root to be perturbed by

amounts of size €,

L R R L T T R R S Y Y I T

