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Imagine that your team is developing controls to actuate part of a robotic system. The system is 
driven by an electric motor with velocity control. Before you begin the design, you want to address 

some key questions—for example:

• How do we size the motors?

• What if the requirements change?

• How can we optimize the design to ensure the desired performance?

• How can we test the design thoroughly while minimizing risk?

Whether you’re developing controls for an industrial robot, a wind turbine, a production machine, an 
autonomous vehicle, an excavator, or an electric servo drive, if your team is manually writing code 
and using document-based requirements capture, the only way to answer these questions will be 
through trial and error or testing on a physical prototype. And if a single requirement changes, the 
entire system will have to be recoded and rebuilt, delaying the project by days, or even weeks. 

Using Model-Based Design with MATLAB® and Simulink®, instead of handwritten code and docu-
ments, you create a system model—in the case of the industrial robot, a model comprising the robot 
arm, the motors, and the controller design. You can simulate the model at any point to get an instant 
view of system behavior and to test out multiple what-if scenarios without risk, without delay, and 
without reliance on costly hardware. 

This white paper introduces Model-Based Design and provides tips and best practices for getting 
started. Using real-world examples, it shows how teams across industries have adopted Model-Based 
Design to reduce development time, minimize component integration issues, and deliver higher- 
quality products. 

What Is Model-Based Design? 
The best way to understand Model-Based Design is to see it in action:

A team of automotive engineers sets out to build an engine control unit (ECU) for a passen-
ger vehicle. Because they are using Model-Based Design, they begin by building an architec-
ture model from the system requirements; in this case, the system is a four-cylinder engine. A 
simulation/design model is then derived. This high-level, low-fidelity model includes portions 
of the controls software that will be running in the ECU, and the plant—in this case, the 
engine and the operating environment.

The team performs initial system and integration tests by simulating this high-level model 
under various scenarios to verify that the system is represented correctly and that it properly 
responds to input signals. 

They add detail to the model, continuously testing and verifying the system-level behavior 
against specifications. If the system is large and complex, the engineers can develop and test 
individual components independently but still test them frequently in a full system 
simulation. 
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Ultimately, they build a detailed model of the system and the environment in which it oper-
ates. This model captures the accumulated knowledge about the system (the IP). The engi-
neers generate code automatically from the model of the control algorithms for software 
testing and verification. Following hardware-in-the-loop tests, they download the generated 
code onto production hardware for testing in an actual vehicle. 

As this scenario shows, Model-Based Design uses the same elements as traditional development work-
flows, but with two key differences: 

• Many of the time-consuming or error-prone steps in the workflow—for example, code gener-
ation—are automated. 

• A system model is at the heart of development, from requirements capture through design, 
implementation, and testing.

Workflow for Model-Based Design.

Requirements Capture and Management

In a traditional workflow, where requirements are captured in documents, handoff can lead to errors 
and delay. Often, the engineers creating the design documents or requirements are different from 
those who design the system. Requirements may be “thrown over a wall,” meaning there’s no clear or 
consistent communication between the two teams. 

In Model-Based Design, you author, analyze, and manage requirements within your Simulink model. 
You can create rich text requirements with custom attributes and link them to designs, code, and 
tests. Requirements can also be imported and synchronized from external sources such as require-
ments management tools. When a requirement linked to the design changes, you receive automatic 
notification. As a result, you can identify the part of the design or test directly affected by the change 
and take appropriate action to address it. You can define, analyze, and specify architectures and com-
positions for systems and software components. 
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Design

In a traditional approach, every design idea must be coded and tested on a physical prototype. As a 
result, only a limited number of design ideas and scenarios can be explored because each test iteration 
adds to the project development time and cost.

In Model-Based Design, the number of ideas that can be explored is virtually limitless. Requirements, 
system components, IP, and test scenarios are all captured in your model, and because the model can 
be simulated, you can investigate design problems and questions long before building expensive hard-
ware. You can quickly evaluate multiple design ideas, explore tradeoffs, and see how each design 
change affects the system. 

Case Study: Embraer  

The Embraer Legacy 500 is the first midsized business jet with 
intelligent flight controls and full fly-by-wire technology. This tech-
nology, which replaces mechanical controls in the flight control system (FCS), enables more control surfaces to 
be actuated simultaneously, leading to smoother flights, reduced pilot workloads, and increased safety.
Embraer worked with customers to develop high-level requirements for the Legacy 500. A principal challenge 
was translating the high-level requirements into well-written low-level requirements for the supplier who would 
develop the FCS software.

Early designs were developed without the intensive use of modeling and simulation. As a result, requirements 
sometimes had to be rewritten after they were delivered to the supplier, wasting time and increasing costs.

Embraer engineers decided to use Model-Based Design to define the low-level requirements for the Legacy 
500 FCS. They created a detailed model of the FCS, as well as models of the aircraft dynamics and pilot 
inputs. The complete model comprises more than a million blocks and dozens of components, many with more 
than 700 inputs and 500 outputs.

They created functional test cases, which they ran on the model to verify that the high-level requirements were 
being met and to validate the low-level requirements. Embraer then delivered the written requirements to the 
supplier, who performed their own validation before implementing the system according to DO-178 Level A 
and other aviation standards.

The Embraer Legacy 500.

“Our group produced twice 
as many requirements, and 
had 50 times fewer issues per 
requirement, than was  
typical when we used a 
traditional methodology. The 
longest requirements-related 
delay using Model-Based 
Design was one day, whereas 
the shortest delay using a doc-
ument basis was two weeks.”

— Julio Graves, Embraer

https://www.mathworks.com/company/user_stories/embraer-speeds-requirements-engineering-and-prototyping-of-legacy-500-flight-control-system.html
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Case Study: Ather Energy 

Most of Bangalore’s more than 5 million two-wheeled scooters—

about 70% of all vehicles in the city—are petrol-powered, resulting in high levels of noise pollution and CO2 emissions. To 

meet the demand for cleaner alternatives, startup company Ather Energy has built India’s first intelligent electric scooter. 

Capable of accelerating from 0 to 40 km/h in less than 4 seconds, the Ather 450 has a top speed of 80 km/h and a 

range of up to 75 km on a single charge.

Because the 450 would be one of the first of its kind in the market, the team faced numerous unknowns. After 
building a plant model comprising the scooter and its main components, they ran simulations to evaluate 
riding and usage scenarios—for example, operating the 450 on an incline, with multiple riders, in extreme 
temperatures, and with a mostly depleted battery. 

They used the simulation results to make informed design tradeoffs; the results showed, for example, that 
increasing battery capacity would provide better range, but it would also increase cost and size, as well as 
alter the scooter’s center of gravity. They refined the design until they had identified a motor and battery con-
figuration that met the target acceleration and range requirements while satisfying cost, size, and temperature 
constraints.

In addition to designing the scooter itself, the engineers developed embedded control algorithms for battery 
charging, temperature management, and other key functions. In the absence of detailed component data, the 
team took an empirical approach to modeling the battery cells. They tested the battery at various tempera-
tures and state-of-charge levels and used the measured input-output data to create a black-box model of the 
cell’s electrical and thermal characteristics.

Next, they developed algorithms for battery charging, power control, and temperature control. They ran 
closed-loop simulations with the plant model to validate their control design. They generated code from the 
controller model and deployed it either to an ARM® Cortex® processor on the scooter or to a TI C2000™ 
microcontroller in the charging stations.

The Ather 450 is now in production, with an initial release in Bengaluru as well as 31 charging stations and 
7 stations in Chennai. 

The Ather 450 intelligent electric scooter.

“We had lots of promising ideas, 
but as a small startup, we did not 
have the time, money, or people to 
build prototypes to test each one. 
With Model-Based Design, we 
identified and validated the best 
ideas through simulation, making it 
possible to deliver a more full-fea-
tured scooter in less time.”

— Shivaram N.V., Ather Energy 

https://www.mathworks.com/company/user_stories/ather-energy-develops-electric-two-wheeled-scooter-and-charging-stations-using-model-based-design.html?s_tid=srchtitle
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Code Generation

In a traditional workflow, embedded code must be handwritten from system models or from scratch. 
Software engineers write control algorithms based on specifications written by control systems engi-
neers. Each step in this process—writing the specification, manually coding the algorithms, and 
debugging the handwritten code—can be both time-consuming and error-prone. 

With Model-Based Design, instead of writing thousands of lines of code by hand, you generate code 
directly from your model, and the model acts as a bridge between the software engineers and the con-
trol systems engineers. The generated code can be used for rapid prototyping or production. 

Rapid prototyping provides a fast and inexpensive way to test algorithms on hardware in real time 
and perform design iterations in minutes rather than weeks.  You can use prototype hardware or your 
production ECU. With the same rapid prototyping hardware and design models, you can conduct 
hardware-in-the-loop testing and other test and verification activities to validate hardware and soft-
ware designs before production.  

Production code generation converts your model into the actual code that will be implemented on the 
production embedded system. The generated code can be optimized for specific processor architec-
tures and integrated with handwritten legacy code.
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Case Study: Murata Manufacturing
 

Murata Manufacturing is developing an energy management system 
(EMS) that combines a solar panel, a battery controller, a grid-tied 
inverter, and an intelligent control system. When the solar panel pro-

duces more power than the user needs, the control system either uses 
the excess energy to charge the battery or feeds it back into the grid. 
Conversely, when the user needs more power than is being produced 
by the solar panel, the control system either discharges the battery or 
accesses power from the grid.

To shorten development time for the control system, the engineering team wanted to generate control code 
directly from their models. With just three engineers on the team, and with little previous programming experi-
ence, they felt that writing and debugging the control code by hand would take too long and result in poor 
quality. 

They created plant models of the major system components, including the solar converter, battery DC-DC  
converter, and three-phase grid-tied inverter. The team modeled the system’s controller and then ran closed-
loop simulations with the controller and the plants. Additional closed-loop simulations were performed to 
assess the design’s response to abnormal situations, including blackouts and phase unbalance of the grid.

They generated C code from the controller model and deployed it to a 32-bit microcontroller. The team tested 
the microcontroller and EMS circuitry together to verify the code with the production hardware by running 
open-loop tests to perform basic checks and by verifying system closed-loop controller and state transitions.

Murata flexible three-phase 
energy management system 

with lithium-ion battery.

“Because our programming experience was limited, 
I expect there would have been many more bugs 
if we had hand-coded our controller. Generating 
100% of our code guaranteed reliability. We read 
the output and found zero bugs in the code we 
generated with Embedded Coder.”

— Dr. Yue Ma, Murata Manufacturing Co., Ltd.

https://www.mathworks.com/company/user_stories/murata-reduces-development-time-for-energy-management-system-control-software-by-50-with-model-based-design.html
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Test and Verification

In a traditional development workflow, test and verification typically occur late in the process, 
making it difficult to identify and correct errors introduced during the design and coding phases. 

In Model-Based Design, test and verification occur throughout the development cycle, starting with 
modeling requirements and specifications and continuing through design, code generation, and inte-
gration. You can author requirements in your model and trace them to the design, tests, and code. 
Formal methods help prove that your design meets requirements. You can produce reports and arti-
facts and certify your software to functional safety standards. 

Case Study: Bombardier Transportation

New designs for light rail, metro, commuter, intercity, loco-

motives, and high-speed trains must meet the specific 

needs of the cities or regions the vehicles will serve. In 

addition, software systems for these vehicles must comply with local and country-specific regulations, as well as with indus-

try standards such as EN 50128 and EN 50657.

In the rail transportation industry, system tests often cannot be performed until a complete vehicle is built and 
on tracks. Engineers at Bombardier Transportation shortened lead times and reduced development costs for 
the company’s MITRAC propulsion and control systems by adopting Model-Based Design with MATLAB and 
Simulink.

Before they adopted Model-Based Design, Bombardier followed a traditional waterfall workflow for control 
software development: One team was responsible for the requirements and design, which would be handed 
off to a second team for implementation via traditional manual coding. Most testing was done in a hardware-
in-the-loop environment followed by a combined hardware/software system test, and some tests had to be 
conducted on the train itself. If errors were discovered late in this process, it could lead to weeks or even 
months of costly rework and delays.

Now that they have adopted Model-Based Design, Bombardier engineers configure and adapt control models 
to satisfy customer-defined requirements captured in IBM® Rational® DOORS® or Microsoft® Word documents. 
They then create electrical hardware (plant) models of the propulsion systems and run closed-loop simulations 
to validate requirements, verify functionality, and assess controller performance. In one instance, the team cre-
ated an electrical and control system model in MATLAB and Simulink. By simulating the model, they identified 
an electrical fault that typically would not have been found until a combined system test. 

Bombardier train for Germany.

“Compared with using our traditional 
approach, with Model-Based Design 
we required far fewer design, imple-
mentation, test, and documentation 
iterations, resulting in a cost reduction 
of 45% and a lead time reduction 
of 35%. The customer was deeply 
impressed by receiving an extremely 
challenging function that worked flaw-
lessly from the start.”

— Claes Lindskog,  
Bombardier Transportation

https://www.mathworks.com/company/user_stories/bombardier-transportation-implements-model-based-design-to-accelerate-rail-propulsion-system-development.html
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Getting Started

While your team might see the benefits of moving to Model-Based Design, they might also be con-
cerned about the risks and challenges—organizational, logistical, and technical—that could be 
involved. This section addresses questions frequently asked by engineering teams considering adopt-
ing Model-Based Design and provides tips and best practices that have helped many of these teams 
manage the transition. 

Q. How are engineering roles affected by the introduction of Model-Based Design? 
A. Model-Based Design does not replace engineering expertise in control design and software archi-
tecture. With Model-Based Design, control engineers’ roles expand from providing paper require-
ments to providing executable requirements in the form of models and code. Software engineers 
spend less time coding application software and more time on modeling architecture; coding OS, 
device driver, and other platform software; and performing system integration. Both control and soft-
ware engineers influence the system-level design from the earliest stages of the development process. 

Q. What happens to our existing code? 
A. It can become part of the design; your system model can contain both intrinsically modeled and 
legacy components. This means that you can phase in legacy components while continuing to per-
form system simulation, verification, and code generation. 

Q. Is there a recommended way to adopt Model-Based Design? 
A. Trying new approaches and design tools always carries an element of risk. Successful teams have 
mitigated this risk by introducing Model-Based Design gradually, taking focused steps that help a 
project along without slowing it down. Organizations of all sizes begin their initial adoption of 
Model-Based Design at the small group level. They usually start with a single project that will provide 
a quick win and build on that early success. After gaining experience, they roll out Model-Based 
Design at the department level so that models become central to all the group’s embedded systems 
development. 
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These four best practices have worked well for many teams:

• Experiment with a small piece of the project. A good way to start is to select a new area of 
the embedded system, build a model of the software behavior, and generate code from the 
model. A team member can make this small change with a minimal investment in learning 
new tools and techniques. You can use the results to demonstrate some key benefits of Model-
Based Design:

• High-quality code can be generated automatically.

• The code matches the behavior of the model.

• By simulating a model you can work out the bugs in the algorithms much more simply. 
and with greater insights than by testing C code on the desktop.

• Build on your initial modeling success by adding system-level simulation. As previous  
sections of this paper have shown, you can use system simulation to validate requirements, 
investigate design questions, and conduct early test and verification. The system model does 
not need to be high-fidelity; it just needs to have enough detail to ensure that interfacing  
signals have the right units and are connected to the right channels, and that the dynamic 
behavior of the system is captured. The simulation results give you an early view of how the 
plant and controller will behave. 

• Use models to solve specific design problems. Your team can gain targeted benefits even 
without developing full-scale models of the plant, environment, and algorithm. For example, 
suppose your team needs to select parameters for a solenoid used for actuation. They can 
develop a simple model that draws a conceptual “control volume” around the solenoid, 
including what drives it and what it acts upon. The team can test various extreme operating 
conditions and derive the basic parameters without having to derive the equations. This 
model can then be stored for use on a different design problem or in a future project. 

• Begin with the core elements of Model-Based Design. The immediate benefits of Model-
Based Design include the ability to create component and system models, use simulations to 
test and validate designs, and generate C code automatically for prototyping and testing. 
Later, you can consider advanced tools and practices and introduce modeling guidelines, 
automated compliance checking, requirements traceability, and software build automation. 
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Case Study: Danfoss 

To help meet increased demand for its products, the Danfoss power electronics group hired new engineers and re-evaluated its 

embedded software development processes, which up to then had relied on manual coding. With a traditional development 

process and manual coding, errors remained undetected until hardware prototype and certification testing.

While Danfoss knew they needed a new process, they were worried that adopting Model-Based Design would 
jeopardize deadlines. Bringing the team up to speed would take time. In addition, work on a new product, a 
solar inverter, had already begun. Model-Based Design would have to be introduced during development, and 
without affecting project deadlines.

Working with MathWorks consultants, Danfoss first developed a plan to ensure successful adoption of Model-
Based Design. Danfoss engineers attended on-site training courses on Simulink, Stateflow®, and Embedded 
Coder® led by MathWorks engineers.

The team then completed a pilot project in which they rebuilt an existing software component that had been 
coded by hand. For the pilot, they decided to focus on three core capabilities of Model-Based Design: model-
ing, simulation, and code generation. After completing the pilot project, the team fully transitioned to Model-
Based Design for development of the new solar inverter.

In weekly phone calls, MathWorks consultants advised them on the best way to get started, provided feedback 
on early versions of the models, and helped the team apply industry best practices to maximize model reuse 
and improve generated code performance.

The team completed development on schedule, and the test and certification campaign progressed smoothly 
due to the extensive simulations the team had performed in preparation.

Now that they have demonstrated the success of the new workflow, more engineers are involved in Model-
Based Design across the organization, and they have built a library of models and a knowledge base that can 
be reused on future projects.

The Danfoss VLT® AutomationDrive FC302.

“We completed our first solar inverter 
project with Model-Based Design on 
schedule, despite ramping up new 
engineers and adopting a new design 
process. For our second project, we 
actually reduced development time by 
10–15%.”

— Jens Godbersen, Danfoss

https://www.mathworks.com/company/user_stories/danfoss-adopts-model-based-design-to-speed-development-of-power-electronics-control-systems.html
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Summary

A system model is at the center of development, from requirements capture to design, implementa-
tion, and testing. That’s the essence of Model-Based Design. With this system model you can:

• Link designs directly to requirements

• Collaborate in a shared design environment 

• Simulate multiple what-if scenarios

• Optimize system-level performance

• Automatically generate embedded software code, reports, and documentation

• Detect errors earlier by testing earlier

Tools for Model-Based Design

Foundation Products
MATLAB®

Analyze data, develop algorithms, and create mathematical models

Simulink®

Model and simulate embedded systems

Requirements Capture and Management
Simulink Requirements™

Author, manage, and trace requirements to models, generated code, and test cases

System Composer™

Design and analyze system and software architectures

“Three years ago, SAIC Motor did not have rich experience developing embedded 
control software. We chose Model-Based Design because it is a proven and efficient 
development method. This approach enabled our team of engineers to develop high-
ly complex HCU control logic and complete the project ahead of schedule.” 

— Jun Zhu, SAIC Motor Corporation

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/system-composer.html
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Design

Simulink Control Design™

Linearize models and design control systems

Stateflow®

Model and simulate decision logic using state machines and flow charts

Simscape™

Model and simulate multidomain physical systems

Code Generation

Simulink Coder™

Generate C and C++ code from Simulink and Stateflow models

Embedded Coder®

Generate C and C++ code optimized for embedded systems

HDL Coder™

Generate VHDL and Verilog code for FPGA and ASIC designs

Test and Verification

Simulink Test™

Develop, manage, and execute simulation-based tests

Simulink Check™

Verify compliance with style guidelines and modeling standards

Simulink Coverage™

Measure test coverage in models and generated code

Simulink Real-Time™

Build, run, and test real-time applications

Polyspace® Products

Prove the absence of critical run-time errors

https://www.mathworks.com/products/simcontrol.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-check.html
https://www.mathworks.com/products/simulink-coverage.html
https://www.mathworks.com/products/simulink-real-time.html
https://www.mathworks.com/products/polyspace.html
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Learn More
mathworks.com has a range of resources to help you ramp up quickly with Model-Based Design. 
We recommend that you begin with these:

Interactive Tutorials
MATLAB Onramp

Simulink Onramp

Stateflow Onramp

Webinars
Simulink for New Users (36:05)

Model-Based Design of Control Systems (54:59)

Accelerating the Pace and Scope of Control System Design (51:03)

Modeling, Simulating, and Generating Code for a Solar Inverter (45:00)

Onsite or Self-Paced Training Courses
MATLAB Fundamentals

Simulink for System and Algorithm Modeling

Control System Design with MATLAB and Simulink

Additional Resources
Consulting Services

https://www.mathworks.com/learn/tutorials/matlab-onramp.html
https://www.mathworks.com/learn/tutorials/simulink-onramp.html
https://www.mathworks.com/learn/tutorials/stateflow-onramp.html
https://www.mathworks.com/videos/introduction-to-simulink-for-system-modeling-and-simulation-1596129507932.html
https://www.mathworks.com/videos/model-based-design-of-control-systems-81921.html
https://www.mathworks.com/videos/accelerating-the-pace-and-scope-of-control-system-design-1493659266810.html
https://www.mathworks.com/videos/modeling-simulating-and-generating-code-for-a-solar-inverter-1541092623689.html
https://www.mathworks.com/training-schedule/matlab-fundamentals.html
https://www.mathworks.com/training-schedule/simulink-for-system-and-algorithm-modeling.html
https://www.mathworks.com/training-schedule/control-system-design-with-matlab-and-simulink.html
https://www.mathworks.com/services/consulting/proven-solutions.html

