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Imagine that your team is developing the power system of a satellite. The system incorporates a com-
bination of physical elements (e.g., battery, solar panels), control logic, and external conditions (e.g., 
temperature, radiation). Before you begin the design, you want to address some key questions—for 
example: 

• How do we size the batteries? 

• What if the requirements change? 

• How can we optimize the design to ensure the desired performance? 

• How can we test the design thoroughly while minimizing risk? 

Whether you’re developing controls for a flight system, an industrial robot, a wind turbine, a produc-
tion machine, an autonomous vehicle, an excavator, or an electric servo drive, if your team is manual-
ly writing code and using document-based requirements capture, the only way to answer these 
questions will be through trial and error or testing on a physical prototype. And if a single require-
ment changes, the entire system will have to be recoded and rebuilt, delaying the project by days, or 
even weeks. 

Using Model-Based Design with MATLAB® and Simulink®, instead of handwritten code and docu-
ments, you create a system model—a model incorporating the physical model, the control algorithms, 
and the environment. You can simulate the model at any point to get an instant view of system behav-
ior and to test out multiple what-if scenarios and tradeoff analyses without risk, without delay, and 
without reliance on costly hardware. 

This white paper introduces Model-Based Design and provides tips and best practices for getting 
started. Using real-world examples, it shows how teams across industries have adopted Model-Based 
Design to reduce development time, minimize component integration issues, and deliver higher- 
quality products. 

What Is Model-Based Design? 
The best way to understand Model-Based Design is to see it in action: 

A team of aerospace engineers sets out to design the guidance, navigation, and control (GNC) 
system for a satellite. Because they are using Model-Based Design, they begin by building an 
architecture model from the system requirements; in this case, it’s the satellite model itself. A 
simulation/design model is then derived. This high-level, low-fidelity model includes portions 
of the controls software that will be running in the satellite, plus the plant and the operating 
environment. 

The team performs initial system and integration tests by simulating this high-level model 
under various scenarios to verify that the system is represented correctly and that it properly 
responds to input signals. 

They add detail to the model, continuously testing and verifying the system-level behavior 
against specifications. If the system is large and complex, the engineers can develop and test 
individual components independently but still test them frequently in a full system 
simulation. 
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Ultimately, they build a detailed model of the system and the environment in which it oper-
ates. This model captures the accumulated knowledge about the system (the IP). The engi-
neers generate code automatically from the model of the control algorithms for software 
testing and verification. Following hardware-in-the-loop tests, they download the generated 
code onto production hardware for testing in an actual final system. 

As this scenario shows, Model-Based Design uses the same elements as traditional development work-
flows, but with two key differences: 

• Many of the time-consuming or error-prone steps in the workflow—for example, code gener-
ation—are automated. 

• A system model is at the heart of development, from requirements capture through design, 
implementation, and testing. 

Workflow for Model-Based Design. 
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Systems Engineering, Requirements Capture and Management 
In a traditional workflow, where requirements are captured in documents, handoff can lead to errors 
and delay. Often, the engineers creating the design documents or requirements are different from 
those who design the system. Requirements may be “thrown over a wall,” meaning there’s no clear or 
consistent communication between the two teams. 

In Model-Based Design, you author, analyze, and manage requirements within your Simulink model. 
You can create rich text requirements with custom attributes and link them to designs, code, and 
tests. Requirements can also be imported and synchronized from external sources such as require-
ments management tools. When a requirement linked to the design changes, you receive automatic 
notification. As a result, you can identify the part of the design or test directly affected by the change 
and take appropriate action to address it. You can define, analyze, and specify architectures and com-
positions for systems and software components. 

In addition, systems engineers can use MATLAB and Simulink to perform dynamic analysis. They 
use executable models of multidomain spacecraft and ground systems for requirements validation and 
verification, providing insights into system-level behavior and performance that cannot be obtained 
by static analysis alone. This approach also enables them to trace requirements from high-level speci-
fications, monitor the detailed implementation of the requirements in the design, and track the 
requirements in the automatically generated source code. They can map the requirements to test cases 
and automatically measure requirements coverage as the test cases are executed.
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Case Study: ESA & Airbus Defense and Space
 

When a European Space Agency (ESA) launcher, such as the Ariane 5 or Vega, delivers its satellite payload 
into orbit, the attitude control system (ACS) takes control, orients the payload, and commands the separation 
from the upper stage of the launcher. In addition to orienting the satellite, the ACS must identify and manage 
problems associated with the separation process, the sloshing of propellant, and a wide range of potential 
hardware faults.

ESA and Airbus wanted to simulate separation failures with a physical model in order to test the controller’s 
ability to detect failures and undertake corrective action. They also needed to simulate sloshing propellant, 
leaks in pipelines, stuck valves, and a range of other faults. In addition, they wanted to run optimizations to 
identify the worst-case performance of the system should faults occur. 

Engineers sought to test their control algorithms on flight computer hardware as early as possible in develop-
ment. As control algorithms grow in complexity, they push the limits of processor performance and other com-
puting resources. The engineers needed to verify algorithm performance and resource utilization on a 
representative flight computer while the controller was being designed, when it would be easiest to correct 
problems. 

ESA and Airbus engineers used Model-Based Design with MATLAB, Simulink, and a combination of code 
generation, physical modelling, control logic design, and verification and validation tools to create the Upper 
Stage Attitude Control and Design Framework (USACDF), which enables closed-loop simulation and verifica-
tion of control algorithms with physical models and is used to build demonstrators for complex orbital servic-
ing mission operations concepts.

“Model-Based Design enabled us to 
create a framework for designing 
flight controllers with state-of-the art 
robust control design algorithms, 
creating multidomain physical 
models, tuning the design through 
optimization, and generating code for 
PIL testing on target hardware—all in 
the same environment.” 

— Hans Strauch, Airbus D&S

Propellant motion in spinning upper stages at 
46, 350, and 600 seconds. Distribution after 

350 seconds becomes uneven. 

https://www.mathworks.com/company/user_stories/esa-and-airbus-create-upper-stage-attitude-control-development-framework-using-model-based-design.html
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Design 
In a traditional approach, every design idea must be coded and tested on a physical prototype. As a 
result, only a limited number of design ideas and scenarios can be explored because each test iteration 
adds to the project development time and cost. In the space domain, design choices are especially crit-
ical to ensure the physical system used in the mission is right.

In Model-Based Design, the number of ideas that can be explored is virtually limitless. Requirements, 
system components, IP, and test scenarios are all captured in your model, and because the model can 
be simulated, you can investigate design problems and questions long before building expensive hard-
ware. You can quickly evaluate multiple design ideas, explore tradeoffs, and see how each design 
change affects the system. 

Case Study: Tessella
 

The Solar Orbiter mission of the European Space Agency’s Cosmic Vision program is set to answer fundamen-
tal questions about the workings of the solar system and the origins of the universe. The attitude and orbit con-
trol subsystem (AOCS) will be responsible for keeping the spacecraft and its solar shield oriented toward the 
sun and for maintaining a precise attitude to maximize the accuracy of the instruments.

The AOCS must continuously adjust the Solar Orbiter spacecraft’s attitude so that the solar shield provides 
maximum protection as the spacecraft passes close to the sun. For safety reasons, the AOCS cannot allow the 
spacecraft to depoint more than 6.5 degrees from the Sun at any time, even after a failure. During scientific 
observations, pointing stability must be within a few tenths of an arcsecond. 

In addition to meeting these requirements, the AOCS had to account for disturbance torques from solar radia-
tion pressure, gravity gradient, and aerodynamic forces. 

The spacecraft’s physical structure compounded the AOCS design challenge. The solar shield contributed to 
an unusual mass distribution that made stability a challenge. In addition, multiple flexible appendages—
including solar arrays—made the entire structure susceptible to resonance.

Tessella engineers used Model-Based Design to design, model, simulate, and perform preliminary tuning of 
the algorithms, and prove their suitability for formal coding and verification. Working in Simulink, the team 
modeled the spacecraft’s actuation systems, including its four reaction wheels and chemical propulsion thrust-
ers. To provide fine-grained control of the thrusters, the team developed and modeled an actuator command-
ing algorithm using pulse-width modulation.

“We saw the benefits of Model-Based 
Design on several previous projects. 
On this project, MATLAB and Simulink 
enabled us to create a detailed 
specification that minimized deviation 
between the prototype algorithms 
we developed, tuned, and tested 
in Simulink and the final software 
implementation.” 

— Andrew Pollard, Tessella

Artist’s rendition of the Solar Orbiter. 

https://www.mathworks.com/company/user_stories/tessella-designs-attitude-and-orbit-control-algorithms-for-solar-orbiter-spacecraft-using-model-based-design.html
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Power System
Power systems engineers use MATLAB and Simulink to run simulations for mission power profile 
analysis, predict the system impacts of battery aging, and perform detailed design of electrical com-
ponents such as DC-DC converters.

They can rapidly model electrical components and systems, such as solar arrays and voltage regula-
tors, using provided blocks, or they can create custom blocks where the design calls for it. Engineers 
can then simulate the model to solve the underlying complex systems of equations without writing 
low-level code, and immediately visualize the results. They can also include thermal and attitude 
effects in their models to perform multidomain simulation within one environment.

Case Study: Lockheed Martin 
 

Lockheed Martin engineers developed a power system model for NASA’s Constellation program using 
Microsoft® Excel® and Visual Basic® for Applications (VBA). As engineers tried to examine more and more test 
cases, however, the model slowed and occasionally crashed. Because it was a single-node power model, the 
team could not use it to evaluate voltage drops throughout the system or to assess power quality requirements.

Lockheed Martin engineers used Simulink and Simscape Electrical to model and simulate the power system for 
the Orion spacecraft. To calculate an accurate current-voltage (IV) curve for the solar array, the model takes 
into account the number of cells per wing, pointing angles of the solar array, shadowing, and thermal effects 
such as solar, planetary infrared and albedo. Performance degradation factors such as radiation, contamina-
tion, and collisions with micrometeoroids and orbital debris were also considered. 

The model of the lithium-ion battery accounts for battery hysteresis effects, temperature, and battery state of 
charge. The team also created a custom power load block in order to simulate the varying loads generated 
by the spacecraft’s propulsion, guidance, and other systems as they switch on and off throughout a mission. 
Using the integrated power system model, the team ran simulations for a variety of mission profiles. They mon-
itored mission and load changes to assess power impacts during development, simulated fault scenarios, 
including battery failures, stuck switches, and solar array failures in the ascent and orbit phases. The results 
were used to guide the development of mission opportunities and protocols for failure cases.

“With Simscape Electrical we created 
an integrated power system model 
that connects electrical and thermal 
domains, so we get the whole picture 
during our mission-level simulations. 
If we need to model the motors 
that turn the solar arrays, we have 
the capability to integrate those 
mechanical components, too.” 

— Hector Hernandez, Lockheed Martin

NASA’s Orion spacecraft.

https://www.mathworks.com/company/user_stories/lockheed-martin-simulates-orion-spacecraft-missions-using-a-multidomain-power-system-model.html
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Communications System
Communications systems engineers use MATLAB and Simulink as a common design environment to 
develop, analyze, and implement spacecraft communications systems. Engineers can use MATLAB 
and Simulink to prototype signal chain elements—including RF, antenna, and digital elements. They 
can then combine the work of multiple teams as a system-level executable model.

Engineers can quickly explore imperfections at the system level and examine what-if scenarios diffi-
cult to produce in the lab. As the design matures, engineers can automatically generate C code for 
embedded processors or HDL code for FPGAs.

Case Study: BAE Systems
 

Long at the forefront of SDR technology, BAE Systems has traditionally used a design flow that relied on 
hand-coding FPGAs in VHDL®. Recently, however, BAE Systems saw an opportunity to evaluate this approach 
against Model-Based Design using MathWorks and Xilinx® tools. Running two SDR waveform development 
efforts in parallel, they found that Simulink® and Xilinx System Generator dramatically reduced development 
time.

BAE Systems was tasked with developing a military standard (MIL-STD-188-165A) satellite communications 
waveform for implementation in a command, control, communications, computers, intelligence, surveillance, 
and reconnaissance (C4ISR) radio. At the same time, BAE Systems sought to evaluate a new design flow for 
reducing development time.

Working with Xilinx, BAE Systems applied Model-Based Design using Simulink and Xilinx System Generator to 
design and deploy an MIL-STD-188 SDR waveform 10 times faster than with their hand-coding approach. 
Based on the success of this project’s initial effort, BAE Systems has begun a joint effort with MathWorks, 
Virginia Tech, Xilinx, and Zeligsoft to improve waveform portability. This group is developing an interface that 
enables code generated by Simulink Coder™ or Xilinx System Generator to be directly incorporated into 
Software Communications Architecture (SCA) radios.

“It took 645 hours for an engineer with 
years of VHDL coding experience 
to hand code a fully functional SDR 
waveform using our traditional design 
flow. A second engineer with limited 
experience completed the same 
project using Simulink and Xilinx 
System Generator in fewer than 46 
hours.” 

— Dr. David Haessig, BAE Systems

Custom board used in the  
traditional design workflow. 

https://www.mathworks.com/company/user_stories/bae-systems-achieves-80-reduction-in-software-defined-radio-development-time.html
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Guidance, Navigation, and Control
Using MATLAB and Simulink, control engineers can test their control algorithms with plant models 
before implementation, so they can achieve complex designs without using expensive prototypes. 
They can design for multiple physical configurations, such as the common bus architecture of a satel-
lite design. In a single environment, engineers work on:

• Building and sharing GNC models

• Integrating and simulating system-level effects of controls and mechanical design changes

• Reusing automatically generated flight code and test cases

• Integrating new designs with legacy designs and tools

Case Study: Lockheed Martin Space Systems

 
The Interface Region Imaging Spectrograph (IRIS) 
observatory is currently in Earth orbit, where it is 
capturing ultraviolet spectra and high-resolution 
images of the sun. These images will help scientists 
better understand the flow of energy and plasma in the lowest levels of the solar atmosphere. 

On similar projects in the past, Lockheed Martin engineers produced extensive algorithm design documents, 
some more than 1000 pages long. Programmers wrote the code by hand based on their interpretation of 
these documents. The entire process was slow, and defects were sometimes introduced during the hand 
coding. With just 23 months scheduled for software design, integration, and testing, the team needed to 
accelerate the software delivery process significantly. 

Lockheed Martin engineers accelerated the development of the IRIS GNC flight software by using Model-
Based Design. Working in MATLAB and Simulink, the engineers developed a basic model of the control 
system to analyze pointing performance, or how accurately the spacecraft could be reoriented. 

They verified the initial GN&C design by running closed-loop simulations with the plant model and performing 
model coverage analysis on the simulations using Simulink Coverage™. They used Embedded Coder to gener-
ate C code for each component, adding a small amount of hand-generated “glue” code for a Moog Broad 
Reach Engineering radiation-hardened microprocessor and its executive software. Using a custom MATLAB 
user interface, the team exercised a variety of Simulink test cases for each GN&C flight software unit.

“A team of about four engineers 
designed, integrated, and tested the 
GN&C system in just 23 months. We 
were more efficient because we used 
the same tools for both analysis and 
code development, and generated 
20,000 lines of defect-free code. For 
us, that makes a compelling case for 
Model-Based Design.” 

— Vincentz Knagenhjelm,  
 GN&C engineer,  
 Lockheed Martin Space Systems

The IRIS observatory. 

https://www.mathworks.com/company/user_stories/lockheed-martin-space-systems-develops-gnc-system-for-iris-satellite-with-model-based-design.html/
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Data and Image Processing and Computer Vision 
Vision-based sensing systems are enabling increased levels of autonomy and precision in navigation 
for space missions. With high-precision relative and optical navigation, vision-based sensing systems 
are playing a critical role in:

• Rendezvous and proximity operations (RPO)

• Entry, descent, and landing (EDL)

• Robotic exploration of the solar system

Today’s increasingly ambitious mission requirements, along with an energized and innovative private 
sector, are motivating a surge of research in vision-based sensing and perception techniques that use 
artificial intelligence with machine learning.

Read the white paper to learn more about:

• Vision-based sensing as an enabler of spacecraft autonomy

• How machine learning trends in the space segment are poised to affect spacecraft artificial 
intelligence (AI)

• How you can use MATLAB and Simulink routines to focus on the higher-level design

Case Study: The Apollo 11 Moon Landing: Spacecraft Design Then and Now
 
Apollo 11, carrying astronauts Neil Armstrong and 
Buzz Aldrin, landed on the moon over 50 years ago. 
To commemorate that momentous event, and to cele-
brate current programs working on the next moon land-
ings, we revisit Richard J. Gran’s firsthand account of 
designing the Lunar Module digital autopilot, published 
in 1999. In that article, Richard described the 
approach he used in the 1960s and compared it with 
the way Model-Based Design with MATLAB and 
Simulink could be used to design GN&C systems in 
1999. In the 20 years since Richard wrote his article, 
Model-Based Design has evolved significantly. To high-
light this evolution, we describe how MATLAB and 
Simulink can be applied to GNC system design today.

Read the article to learn more, and see the Simulink 
system model Richard Gran developed when revisiting 
the LM digital autopilot.

Image courtesy NASA.

https://www.mathworks.com/campaigns/offers/machine-learning-space-missions-vision-based-sensing.html
https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-landing-spacecraft-design-then-and-now.html
https://www.mathworks.com/company/newsletters/articles/the-apollo-11-moon-landing-spacecraft-design-then-and-now.html?s_tid=srchtitle
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Code Generation 
In a traditional workflow, embedded code must be handwritten from system models or from scratch. 
Software engineers write control algorithms based on specifications written by control systems engi-
neers. Each step in this process—writing the specification, manually coding the algorithms, and 
debugging the handwritten code—can be both time-consuming and error-prone. 

Case Study: Cornell University
 

For more than 30 years, scientists have studied local animal populations by recording animal sounds in 
oceans, jungles, forests, and other natural environments. They use the results to assess the effect of man-made 
noise on natural environments, monitor endangered animal populations, and investigate animal communica-
tion. Passive acoustic monitoring systems record sounds continuously, generating terabytes of data. Scientists 
are often unable to process even 1% of this data because they lack the necessary advanced algorithms and 
processing capacity.

The variability of animal sounds across individuals within a species is a further complication. Noisy data and 
variability increase the number of false positives and negatives, reducing the detection algorithms’ accuracy. 
Processing the hundreds of terabytes of data that BRP is gathering presents another challenge. A typical proj-
ect involves processing years of raw acoustic data—up to 10TB—recorded on multiple channels. Each channel 
may capture hundreds of millions of events—sounds that stand out when the data is viewed as a spectrogram. 
Algorithms tested on small, high-quality samples are often considerably less accurate when applied to larger, 
noisier data sets.

BRP data scientists used MATLAB to develop high-performance computing (HPC) software for automatically 
processing acoustic data. They begin a detection-classification project by collecting audio clips of the animal 
they wish to detect, clips of background noise in the animal’s environment, and MAT-files of archived acoustic 
data. Working in MATLAB, they develop new or refine existing algorithms that detect audio sequences in the 
archived data similar to those in the clip catalog. The BRP team developed a MATLAB interface that enables 
researchers to specify the algorithms, data sets, and number of processors. In addition to detection and classi-
fication algorithms, BRP uses MATLAB for noise analysis and acoustic modeling, in which the time and fre-
quency dispersion effects of marine or terrestrial environments are captured and simulated.

“High-performance computing with 
MATLAB enables us to process 
previously unanalyzed big data. 
We translate what we learn into an 
understanding of how human activities 
affect the health of ecosystems to inform 
responsible decisions about what 
humans do in the ocean and  
on land.” 

— Dr. Christopher Clark, Cornell University

An acoustic analysis device used by the 
Bioacoustics Research Program to collect data 
from large baleen whales and other marine 
mammals. Photo courtesy Dimitri Ponirakis. 

https://www.mathworks.com/company/user_stories/cornell-bioacoustics-scientists-develop-a-high-performance-computing-platform-for-analyzing-big-data.html?s_tid=srchtitle
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With Model-Based Design, instead of writing thousands of lines of code by hand, you generate code 
directly from your model, and the model acts as a bridge between the software engineers and the con-
trol systems engineers. The generated code can be used for rapid prototyping or production. 

Rapid prototyping provides a fast and inexpensive way to test algorithms on hardware in real time 
and perform design iterations in minutes rather than weeks. You can use prototype hardware or your 
production ECU. With the same rapid prototyping hardware and design models, you can conduct 
hardware-in-the-loop testing and other test and verification activities to validate hardware and soft-
ware designs before production. 

Production code generation converts your model into the actual code that will be implemented on the 
production embedded system. The generated code can be optimized for specific processor architec-
tures and integrated with handwritten legacy code.

Case Study: Swedish Space Corporation
 

Swedish Space Corporation (SSC) developed the attitude and orbit control system (AOCS) of the Small 
Missions for Advanced Research and Technology (SMART-1) using automatically generated flight code. The 
AOCS orients the spacecraft for thrust vectoring, scientific instrument pointing, and ensuring that the solar 
arrays are illuminated by the sun. It also controls the electric propulsion thrust vector alignment within the 
spacecraft body during lunar transfer and descent phases while providing an advanced failure detection, iso-
lation, and recovery (FDIR) system. 

SSC needed to develop an AOCS within a low-cost mission profile, strict software development standards, 
and a short software development cycle of fewer than two years. Moreover, because the AOCS needed to 
perform in a harsh space environment of intense radiation, minimal gravity, and other effects not testable in a 
lab or on earth, SSC required rigorous proof-chain test capabilities to ensure the system performed correctly 
during flight.

SSC implemented a new development process based on MathWorks tools for Model-Based Design to model, 
simulate, automatically generate code, and to test the onboard AOCS software. Engineers developed accu-
rate simulation models to predict system behavior and to create exhaustive system and software test cases, 
which met the ESA PSS-05 software development standard. SSC also performed software system testing on a 
hard real-time simulation environment and analyzed the results with MATLAB. They verified the AOCS at the 
system level using the integrated spacecraft. These tests included open- and closed-loop tests at the European 
Space Research and Technology Centre (ESTEC) in the Netherlands.

“We successfully developed the 
SMART-1 AOCS in a very short time 
frame and with a very low budget. 
MathWorks tools for simulation and 
flight-code generation played a key 
role in this success and will serve 
as the foundation for future satellite 
programs, such as Prisma.” 

— Per Bodin, Swedish Space Corporation
Artist rendition of SMART-1  

traveling to the Moon. 

https://www.mathworks.com/company/user_stories/esas-first-ever-lunar-mission-satellite-orbits-moon-with-automatically-generated-flight-code.html
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Test and Verification 
In a traditional development workflow, test and verification typically occur late in the process, 
making it difficult to identify and correct errors introduced during the design and coding phases. 

In Model-Based Design, test and verification occur throughout the development cycle, starting with 
modeling requirements and specifications and continuing through design, code generation, and inte-
gration. You can author requirements in your model and trace them to the design, tests, and code. 
Formal methods help prove that your design meets requirements. You can produce reports and arti-
facts and certify your software to functional safety standardssuch as NPR 7150.2 (NASA Software 
Engineering Requirements) and ECSS-E-40 (European Cooperation for Space Standardization,  
Space Engineering Software).

Case Study: OHB
 

Planned space missions often depend on autonomous formation flying, in which one spacecraft approaches 
or flies alongside another. The Prisma project, led by OHB AG (OHB) in collaboration with the French and 
German space agencies and the Technical University of Denmark, tests and validates GNC strategies for 
advanced autonomous formation flying. 

OHB engineers used Model-Based Design to develop GNC algorithms, run system-level real-time closed-loop 
simulations, and generate flight code for Prisma’s two satellites, Mango and Tango. 

OHB partitioned the GNC design into formation flying, rendezvous, and proximity operations. They tested 
and analyzed algorithm ideas in MATLAB before modeling them to verify the algorithms in closed-loop 
simulation. 

Engineers generated code from their GNC models and plant model. They deployed the plant code to 
Simulink Real-Time™ and compiled the GNC code for the onboard target LEON2 processor. OHB then ran 
hardware-in-the-loop (HIL) tests of the combined Simulink Real-Time system and LEON2 controller to verify the 
real-time operation of the algorithms. 

“Those models evolved into full flight 
models, which we verified in closed-
loop simulations with a Simulink plant 
model. From there, generated flight 
code was just a click away.”

— Ron Noteborn, OHB 

Simulation of GNC strategies for advanced 
autonomous formation flying.

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/standards/Poster_MathWorks_NASA_NPR7150_Workflow.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/aerospace-defense/standards/Poster_MathWorks_ECSS_Autocoding_Workflow.pdf
https://www.mathworks.com/company/user_stories/ohb-develops-satellite-guidance-navigation-and-control-software-for-autonomous-formation-flying.html
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Getting Started 
While your team might see the benefits of moving to Model-Based Design, they might also be con-
cerned about the risks and challenges—organizational, logistical, and technical—that could be 
involved. This section addresses questions frequently asked by engineering teams considering adopt-
ing Model-Based Design and provides tips and best practices that have helped many of these teams 
manage the transition. 

Q. How are engineering roles affected by the introduction of Model-Based Design? 
A. Model-Based Design does not replace engineering expertise in control design and software archi-
tecture. With Model-Based Design, control engineers’ roles expand from providing paper require-
ments to providing executable requirements in the form of models and code. Software engineers 
spend less time coding application software and more time on modeling architecture; coding OS, 
device driver, and other platform software; and performing system integration. Both control and soft-
ware engineers influence the system-level design from the earliest stages of the development process. 

Q. What happens to our existing code? 
A. It can become part of the design; your system model can contain both intrinsically modeled and 
legacy components. This means that you can phase in legacy components while continuing to per-
form system simulation, verification, and code generation. 

Q. Is there a recommended way to adopt Model-Based Design? 
A. Trying new approaches and design tools always carries an element of risk. Successful teams have 
mitigated this risk by introducing Model-Based Design gradually, taking focused steps that help a 
project along without slowing it down. Organizations of all sizes begin their initial adoption of 
Model-Based Design at the small group level. They usually start with a single project that will provide 
a quick win and build on that early success. After gaining experience, they roll out Model-Based 
Design at the department level so that models become central to all the group’s embedded systems 
development. 
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These four best practices have worked well for many teams: 

• Experiment with a small piece of the project. A good way to start is to select a new area of 
the embedded system, build a model of the software behavior, and generate code from the 
model. A team member can make this small change with a minimal investment in learning 
new tools and techniques. You can use the results to demonstrate some key benefits of Model- 
Based Design: 

• High-quality code can be generated automatically. 

• The code matches the behavior of the model. 

• By simulating a model, you can work out the bugs in the algorithms much more simply. 
and with greater insights than by testing C code on the desktop. 

• Build on your initial modeling success by adding system-level simulation. As previous sec-
tions of this paper have shown, you can use system simulation to validate requirements, 
investigate design questions, and conduct early test and verification. The system model does 
not need to be high-fidelity; it just needs to have enough detail to ensure that interfacing sig-
nals have the right units and are connected to the right channels, and that the dynamic 
behavior of the system is captured. The simulation results give you an early view of how the 
plant and controller will behave. 

• Use models to solve specific design problems. Your team can gain targeted benefits even 
without developing full-scale models of the plant, environment, and algorithm. For example, 
suppose your team needs to select parameters for a solenoid used for actuation. They can 
develop a simple model that draws a conceptual “control volume” around the solenoid, 
including what drives it and what it acts upon. The team can test various extreme operating 
conditions and derive the basic parameters without having to derive the equations. This 
model can then be stored for use on a different design problem or in a future project. 

• Begin with the core elements of Model-Based Design. The immediate benefits of Model-
Based Design include the ability to create component and system models, use simulations to 
test and validate designs, and generate C code automatically for prototyping and testing. 
Later, you can consider advanced tools and practices and introduce modeling guidelines, 
automated compliance checking, requirements traceability, and software build automation. 
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Case Study: Virgin Orbit
 

LauncherOne is Virgin Orbit’s two-stage launch vehicle for delivering small satellites into low earth orbit. To 
reduce costs and increase launch location flexibility, LauncherOne is designed to be air-dropped from a 747-
400 carrier aircraft in flight. Each mission will entail several crucial separation events, including the separa-
tion of LauncherOne from its carrier aircraft, the first stage from the second, the fairing from the second, and 
the satellite payload from the second.

When the structural design for LauncherOne was still in development, the team had to account for a number 
of unknowns in the analysis of separation events, including the mass properties of each component as well as 
the forces and timing characteristics of the pneumatic and spring pushers used to initiate separations. The 
team needed to run thousands of Monte Carlo simulations while varying the values of these uncertain param-
eters to determine whether a specific parameter combination would cause a collision.

Virgin Orbit engineers modeled and simulated LauncherOne stage and payload separation events with 
Simulink and Simscape Multibody, using Parallel Computing Toolbox™ to run simulations in parallel on multi-
core processors. Working in Simulink with Simscape Multibody, the team constructed a preliminary model 
consisting of basic 3D shapes, including spheres, cones, and cylinders. The team is currently working on simu-
lating the air-drop separation event, which will incorporate a model of aerodynamic forces and effects. The 
team is also refining the model based on results from floor tests of flight hardware in preparation for the 
spacecraft’s maiden launch.

“MATLAB and Simulink saved us 
about 90% on costs compared with 
the alternative we considered while 
giving us the coding flexibility to 
develop our own modules and fully 
understand the assumptions being 
made, which is essential when 
reporting results to other teams.”

— Patrick Harvey, Virgin Orbit
Virgin Orbit’s LauncherOne vehicle assembled 
(top), with exploded view showing the fairing, 
payload, and first and second stages (bottom).

https://www.mathworks.com/company/user_stories/virgin-orbit-simulates-launcherone-stage-separation-events.html
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Summary 
A system model is at the center of development, from requirements capture to design, implementa-
tion, and testing. That’s the essence of Model-Based Design. With this system model you can: 

• Link designs directly to requirements 

• Collaborate in a shared design environment 

• Simulate multiple what-if scenarios 

• Perform wise design choices based on simulation 

• Optimize system-level performance 

• Automatically generate embedded software code, reports, and documentation 

• Detect errors earlier by testing earlier 

Tools for Model-Based Design 

Foundation Products 
MATLAB

Analyze data, develop algorithms, and create mathematical models 

Simulink

Model and simulate embedded systems 

Requirements Capture and Management 
Simulink Requirements 

Author, manage, and trace requirements to models, generated code, and test cases 

System Composer

Design and analyze system and software architectures 

Design 
Simulink Control Design 

Linearize models and design control systems 

Stateflow 

Model and simulate decision logic using state machines and flow charts 

Simscape 

Model and simulate multidomain physical systems 

Satellite Communications Toolbox

Simulate, analyze, and test satellite communications systems and links

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/simcontrol.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/satellite-communications.html
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Code Generation 
Simulink Coder 

Generate C and C++ code from Simulink and Stateflow models 

Embedded Coder 

Generate C and C++ code optimized for embedded systems 

HDL Coder 

Generate VHDL and Verilog code for FPGA and ASIC designs 

Test and Verification 
Simulink Test 

Develop, manage, and execute simulation-based tests 

Simulink Check 

Verify compliance with style guidelines and modeling standards 

Simulink Coverage 

Measure test coverage in models and generated code 

Simulink Real-Time 

Build, run, and test real-time applications 

Polyspace Products 

Prove the absence of critical run-time errors

Learn More 
mathworks.com has a range of resources to help you ramp up quickly with Model-Based Design. We 
recommend that you begin with these: 

Overview
MATLAB and Simulink for Space Systems

Interactive Tutorials

MATLAB Onramp Simulink Onramp 

Signal Processing Onramp Stateflow Onramp

Image Processing Onramp Simscape Onramp

Machine Learning Onramp Control Design Onramp

Deep Learning Onramp Reinforcement Learning Onramp

https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-check.html
https://www.mathworks.com/products/simulink-coverage.html
https://www.mathworks.com/products/simulink-real-time.html
https://www.mathworks.com/products/polyspace.html
https://www.mathworks.com/solutions/aerospace-defense/space-systems.html
https://www.mathworks.com/learn/tutorials/matlab-onramp.html
https://www.mathworks.com/learn/tutorials/simulink-onramp.html
https://www.mathworks.com/learn/tutorials/signal-processing-onramp.html
https://www.mathworks.com/learn/tutorials/stateflow-onramp.html
https://www.mathworks.com/learn/tutorials/image-processing-onramp.html
https://www.mathworks.com/learn/tutorials/simscape-onramp.html
https://www.mathworks.com/learn/tutorials/machine-learning-onramp.html
https://www.mathworks.com/learn/tutorials/control-design-onramp-with-simulink.html
https://www.mathworks.com/learn/tutorials/deep-learning-onramp.html
https://www.mathworks.com/learn/tutorials/reinforcement-learning-onramp.html
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Webinars 
Simulink for New Users (36:05) 

Model-Based Design of Control Systems (54:59) 

Accelerating the Pace and Scope of Control System Design (51:03) 

Impact of Digital Transformation and AI in Space Systems Engineering (1:23:50) 

Onsite or Self-Paced Training Courses 
MATLAB Fundamentals 

Simulink for System and Algorithm Modeling 

Control System Design with MATLAB and Simulink 

Additional Resources 
Consulting Services

https://www.mathworks.com/videos/introduction-to-simulink-for-system-modeling-and-simulation-1596129507932.html
https://www.mathworks.com/videos/model-based-design-of-control-systems-81921.html
https://www.mathworks.com/videos/accelerating-the-pace-and-scope-of-control-system-design-1493659266810.html
https://www.mathworks.com/videos/impact-of-digital-transformation-and-ai-in-space-systems-engineering-1607087190162.html?s_tid=srchtitle
https://www.mathworks.com/training-schedule/matlab-fundamentals.html
https://www.mathworks.com/training-schedule/simulink-for-system-and-algorithm-modeling.html
https://www.mathworks.com/training-schedule/control-system-design-with-matlab-and-simulink.html
https://www.mathworks.com/services/consulting/proven-solutions.html

