Optimize Generated Code by Combining Multiple for
Constructs
This example shows how the code generator combines for
loops. The generated code uses for
constructs to represent a variety of modeling patterns, such as a matrix signal or Iterator blocks. Using data dependency analysis, the code generator combines for
constructs to reduce static code size and runtime branching.
The benefits of optimizing for
loops are:
Reducing ROM and RAM consumption.
Increasing execution speed.
for
Loop Modeling Patterns
Open the example model ForLoopConstruct
. The Switch block and MATLAB Function block represent for
constructs. In the In1
Block Parameters dialog box, the Port dimensions parameter is set to 10
.
model = 'ForLoopConstruct';
open_system(model);
Generate Code
The model does not contain data dependencies across the for
loop iterations. Therefore, the code generator combines for
loops into one loop.
Build the model.
slbuild(model)
### Starting build procedure for: ForLoopConstruct ### Successful completion of build procedure for: ForLoopConstruct Build Summary Top model targets: Model Build Reason Status Build Duration =================================================================================================================== ForLoopConstruct Information cache folder or artifacts were missing. Code generated and compiled. 0h 0m 16.888s 1 of 1 models built (0 models already up to date) Build duration: 0h 0m 17.813s
View the optimized code in ForLoopConstruct.c
.
cfile = fullfile('ForLoopConstruct_grt_rtw','ForLoopConstruct.c'); coder.example.extractLines(cfile,'/* Model step', '/* Model initialize', 1, 0);
/* Model step function */ void ForLoopConstruct_step(void) { real_T In1; real_T rtb_y; int32_T k; /* MATLAB Function: '<Root>/Accum' */ /* MATLAB Function 'Accum': '<S1>:1' */ /* '<S1>:1:3' */ /* '<S1>:1:4' */ rtb_y = 0.0; /* '<S1>:1:5' */ for (k = 0; k < 10; k++) { /* Gain: '<Root>/G1' incorporates: * Inport: '<Root>/In1' */ In1 = ForLoopConstruct_U.In1[k]; /* Switch: '<Root>/Switch' incorporates: * Gain: '<Root>/G1' * Gain: '<Root>/G3' * Sum: '<Root>/Sum1' * Sum: '<Root>/Sum2' * UnitDelay: '<Root>/Delay' */ if (3.0 * In1 >= 0.0) { In1 -= ForLoopConstruct_DW.Delay_DSTATE[k]; } else { In1 = (ForLoopConstruct_DW.Delay_DSTATE[k] - In1) * 5.0; } /* End of Switch: '<Root>/Switch' */ /* MATLAB Function: '<Root>/Accum' */ /* '<S1>:1:6' */ rtb_y += ((real_T)k + 1.0) + In1; /* Update for UnitDelay: '<Root>/Delay' */ ForLoopConstruct_DW.Delay_DSTATE[k] = In1; } /* Outport: '<Root>/Out1' */ ForLoopConstruct_Y.Out1 = rtb_y; }
The generated code contains code for the single for
loop.
Close the model
bdclose(model)