Working with Other Portfolio Objects
The PortfolioMAD
object is for MAD portfolio optimization. The
PortfolioCVaR
object is for CVaR portfolio optimization. The
Portfolio
object is for mean-variance portfolio optimization.
Sometimes, you might want to examine portfolio optimization problems according to
different combinations of return and risk proxies. A common example is that you want to
do a MAD portfolio optimization and then want to work primarily with moments of
portfolio returns. Suppose that you set up a MAD portfolio optimization problem
with:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = PortfolioMAD; p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities'); p = setInitPort(p, pwgt0); p = simulateNormalScenariosByMoments(p, m, C, 20000); p = setDefaultConstraints(p);
To work with the same problem in a mean-variance framework, you can use the scenarios from the
PortfolioMAD
object to set up a Portfolio object so that
p
contains a MAD optimization problem and q
contains a mean-variance optimization problem based on the same
data.
q = Portfolio('AssetList', p.AssetList);
q = estimateAssetMoments(q, p.getScenarios);
q = setDefaultConstraints(q);
pwgt = estimateFrontier(p);
qwgt = estimateFrontier(q);
Since each object has a different risk proxy, it is not possible to compare results side by side. To obtain means and standard deviations of portfolio returns, you can use the functions associated with each object to obtain:
pret = estimatePortReturn(p, pwgt); pstd = estimatePortStd(p, pwgt); qret = estimatePortReturn(q, qwgt); qstd = estimatePortStd(q, qwgt); [pret, qret] [pstd, qstd]
ans = 0.0592 0.0590 0.0730 0.0728 0.0868 0.0867 0.1006 0.1005 0.1145 0.1143 0.1283 0.1282 0.1421 0.1420 0.1559 0.1558 0.1697 0.1697 0.1835 0.1835 ans = 0.0767 0.0767 0.0829 0.0828 0.0989 0.0987 0.1208 0.1206 0.1461 0.1459 0.1732 0.1730 0.2042 0.2040 0.2453 0.2452 0.2929 0.2928 0.3458 0.3458
To produce comparable results, you can use the returns or risks from one portfolio optimization as target returns or risks for the other portfolio optimization.
qwgt = estimateFrontierByReturn(q, pret); qret = estimatePortReturn(q, qwgt); qstd = estimatePortStd(q, qwgt); [pret, qret] [pstd, qstd]
ans = 0.0592 0.0592 0.0730 0.0730 0.0868 0.0868 0.1006 0.1006 0.1145 0.1145 0.1283 0.1283 0.1421 0.1421 0.1559 0.1559 0.1697 0.1697 0.1835 0.1835 ans = 0.0767 0.0767 0.0829 0.0829 0.0989 0.0989 0.1208 0.1208 0.1461 0.1461 0.1732 0.1732 0.2042 0.2042 0.2453 0.2453 0.2929 0.2929 0.3458 0.3458
See Also
Related Examples
- Creating the Portfolio Object
- Creating the PortfolioMAD Object
- Working with MAD Portfolio Constraints Using Defaults
- Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object
- Estimate Efficient Frontiers for PortfolioMAD Object
- Asset Returns and Scenarios Using PortfolioMAD Object