Documentation

## Bisection Algorithm to Calculate Square Root of an Unsigned Fixed-Point Number

This example shows how to generate HDL code from MATLAB® design implementing an bisection algorithm to calculate the square root of a number in fixed point notation.

Same implementation, originally using n-multipliers in HDL code, for wordlength n, under sharing and streaming optimizations, can generate HDL code with only 1 multiplier demonstrating the power of MATLAB® HDL Coder optimizations.

The design of the square-root algorithm shows the pipelining concepts to achieve a fast clock rate in resulting RTL design. Since this design is already in fixed point, you don't need to run fixed-point conversion.

### MATLAB Design

```% Design Sqrt design_name = 'mlhdlc_sqrt'; % Test Bench for Sqrt testbench_name = 'mlhdlc_sqrt_tb'; ```

Lets look at the Sqrt Design

```dbtype(design_name) ```
```1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 % MATLAB design: Pipelined Bisection Square root algorithm 3 % 4 % Introduction: 5 % 6 % Implement SQRT by the bisection algorithm in a pipeline, for unsigned fixed 7 % point numbers (also why you don't need to run fixed-point conversion for this design). 8 % The demo illustrates the usage of a pipelined implementation for numerical algorithms. 9 % 10 % Key Design pattern covered in this example: 11 % (1) State of the bisection algorithm is maintained with persistent variables 12 % (2) Stages of the bisection algorithm are implemented in a pipeline 13 % (3) Code is written in a parameterized fashion, i.e. word-length independent, to work for any size fi-type 14 % 15 % Ref. 1. R. W. Hamming, "Numerical Methods for Scientists and Engineers," 2nd, Ed, pp 67-69. ISBN-13: 978-0486652412. 16 % 2. Bisection method, http://en.wikipedia.org/wiki/Bisection_method, (accessed 02/18/13). 17 % 18 19 % Copyright 2013-2015 The MathWorks, Inc. 20 21 %#codegen 22 function [y,z] = mlhdlc_sqrt( x ) 23 persistent sqrt_pipe 24 persistent in_pipe 25 if isempty(sqrt_pipe) 26 sqrt_pipe = fi(zeros(1,x.WordLength),numerictype(x)); 27 in_pipe = fi(zeros(1,x.WordLength),numerictype(x)); 28 end 29 30 % Extract the outputs from pipeline 31 y = sqrt_pipe(x.WordLength); 32 z = in_pipe(x.WordLength); 33 34 % for analysis purposes you can calculate the error between the fixed-point bisection routine and the floating point result. 35 %Q = [double(y).^2, double(z)]; 36 %[Q, diff(Q)] 37 38 % work the pipeline 39 for itr = x.WordLength-1:-1:1 40 % move pipeline forward 41 in_pipe(itr+1) = in_pipe(itr); 42 % guess the bits of the square-root solution from MSB to the LSB of word length 43 sqrt_pipe(itr+1) = guess_and_update( sqrt_pipe(itr), in_pipe(itr+1), itr ); 44 end 45 46 %% Prime the pipeline 47 % with new input and the guess 48 in_pipe(1) = x; 49 sqrt_pipe(1) = guess_and_update( fi(0,numerictype(x)), x, 1 ); 50 51 %% optionally print state of the pipeline 52 %disp('************** State of Pipeline **********************') 53 %double([in_pipe; sqrt_pipe]) 54 55 return 56 end 57 58 % Guess the bits of the square-root solution from MSB to the LSB in 59 % a binary search-fashion. 60 function update = guess_and_update( prev_guess, x, stage ) 61 % Key step of the bisection algorithm is to set the bits 62 guess = bitset( prev_guess, x.WordLength - stage + 1); 63 % compare if the set bit is a candidate solution to retain or clear it 64 if ( guess*guess <= x ) 65 update = guess; 66 else 67 update = prev_guess; 68 end 69 return 70 end ```

### Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary folder.

```mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos'); mlhdlc_temp_dir = [tempdir 'mlhdlc_sqrt']; % create a temporary folder and copy the MATLAB files cd(tempdir); [~, ~, ~] = rmdir(mlhdlc_temp_dir, 's'); mkdir(mlhdlc_temp_dir); cd(mlhdlc_temp_dir); % copy files to the temp dir copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir); copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir); ```

### Simulate the Design

It is always a good practice to simulate the design with the testbench prior to code generation to make sure there are no runtime errors.

```mlhdlc_sqrt_tb ```
```Iter = 01| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 02| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 03| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 04| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 05| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 06| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 07| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 08| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 09| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 10| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000 Iter = 11| Input = 4.625| Output = 0000010000 (2.00) | actual = 2.150581 | abserror = 0.150581 Iter = 12| Input = 12.500| Output = 0000011100 (3.50) | actual = 3.535534 | abserror = 0.035534 Iter = 13| Input = 16.250| Output = 0000100000 (4.00) | actual = 4.031129 | abserror = 0.031129 Iter = 14| Input = 18.125| Output = 0000100010 (4.25) | actual = 4.257347 | abserror = 0.007347 Iter = 15| Input = 20.125| Output = 0000100010 (4.25) | actual = 4.486090 | abserror = 0.236090 Iter = 16| Input = 21.875| Output = 0000100100 (4.50) | actual = 4.677072 | abserror = 0.177072 Iter = 17| Input = 35.625| Output = 0000101110 (5.75) | actual = 5.968668 | abserror = 0.218668 Iter = 18| Input = 50.250| Output = 0000111000 (7.00) | actual = 7.088723 | abserror = 0.088723 Iter = 19| Input = 54.000| Output = 0000111010 (7.25) | actual = 7.348469 | abserror = 0.098469 Iter = 20| Input = 62.125| Output = 0000111110 (7.75) | actual = 7.881941 | abserror = 0.131941 Iter = 21| Input = 70.000| Output = 0001000010 (8.25) | actual = 8.366600 | abserror = 0.116600 Iter = 22| Input = 81.000| Output = 0001001000 (9.00) | actual = 9.000000 | abserror = 0.000000 Iter = 23| Input = 83.875| Output = 0001001000 (9.00) | actual = 9.158330 | abserror = 0.158330 Iter = 24| Input = 83.875| Output = 0001001000 (9.00) | actual = 9.158330 | abserror = 0.158330 Iter = 25| Input = 86.875| Output = 0001001010 (9.25) | actual = 9.320676 | abserror = 0.070676 Iter = 26| Input = 95.125| Output = 0001001110 (9.75) | actual = 9.753205 | abserror = 0.003205 Iter = 27| Input = 97.000| Output = 0001001110 (9.75) | actual = 9.848858 | abserror = 0.098858 Iter = 28| Input = 101.375| Output = 0001010000 (10.00) | actual = 10.068515 | abserror = 0.068515 Iter = 29| Input = 102.375| Output = 0001010000 (10.00) | actual = 10.118053 | abserror = 0.118053 Iter = 30| Input = 104.250| Output = 0001010000 (10.00) | actual = 10.210289 | abserror = 0.210289 ``` ### Create a New HDL Coder™ Project

```coder -hdlcoder -new mlhdlc_sqrt_prj ```

Next, add the file 'mlhdlc_sqrt.m' to the project as the MATLAB Function and 'mlhdlc_sqrt_tb.m' as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for a more complete tutorial on creating and populating MATLAB HDL Coder projects.

### Run HDL Code Generation

This design is already in fixed point and suitable for HDL code generation. It is not desirable to run floating point to fixed point advisor on this design.

1. Launch Workflow Advisor

2. Under 'Define Input Types' Choose 'Keep original types' for the option 'Fixed-point conversion'

3. Under 'Optimizations' tab in 'RAM Mapping' box uncheck 'MAP persistent variables to RAMs'. We don't want the pipeline to be inferred as a RAM.

4. Optionally you may want to choose, under 'Optimizations' tab, 'Area Optimizations' and set 'Resource sharing factor' equal to wordlength (10 here), select 'Stream Loops' under the 'Loop Optimizations' tab. Also don't forget to check 'Distributed Pipelining' when you enable the optimizations.

5. Click on the 'Code Generation' step and click 'Run'

Examine the generated HDL code by clicking on the hyperlinks in the Code Generation Log window.

### Examine the Synthesis Results

1. Run the logic synthesis step with the following default options if you have ISE installed on your machine.

2. In the synthesis report, note the clock frequency reported by the synthesis tool without any optimization options enabled.

3. Typically timing performance of this design using Xilinx ISE synthesis tool for the 'Virtex7' chip family, device 'xc7v285t', speed grade -3, to be around 229MHz, and a maximum combinatorial path delay: 0.406ns.

4. Optimizations for this design (loop streaming and multiplier sharing) work to reduce resource usage, with a moderate trade-off on timing. For the particular word-length size in test bench you will see a reduction of n multipliers to 1.

### Clean up the Generated Files

You can run the following commands to clean up the temporary project folder.

```mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos'); mlhdlc_temp_dir = [tempdir 'mlhdlc_sqrt']; clear mex; cd (mlhdlc_demo_dir); rmdir(mlhdlc_temp_dir, 's'); ```