Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input
lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)
lm = linapp(nlmodel,u)
computes a linear approximation of a
nonlinear ARX or Hammerstein-Wiener model by simulating the model output for the input
signal u
, and estimating a linear model lm
from
u
and the simulated output signal. lm
is an
idpoly
model.
lm = linapp(nlmodel,umin,umax,nsample)
computes a linear
approximation of a nonlinear ARX or Hammerstein-Wiener model by first generating the
input signal as a uniformly distributed white noise from the magnitude range
umin
and umax
and (optionally) the number of
samples.
nlmodel
Name of the idnlarx
or idnlhw
model
object you want to linearize.
u
Input signal as an iddata
object or a real
matrix.
Dimensions of u
must match the number of inputs in
nlmodel
.
[umin,umax]
Minimum and maximum input values for generating white-noise input with a
magnitude in this rectangular range. The sample length of this signal is
nsample
.
nsample
Optional argument when you specify [umin,umax]
.
Specifies the length of the white-noise input.
Default:
1024
.
idnlarx
| idnlarx/findop
| idnlarx/linearize
| idnlhw
| idnlhw/findop
| idnlhw/linearize