# Solve PDEs with Nonconstant Boundary Conditions

This example shows how to write functions for a nonconstant boundary condition specification.

### Geometry

All the specifications use the same geometry, which is a rectangle with a circular hole.

```% Rectangle is code 3, 4 sides, followed by x-coordinates and then y-coordinates R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]'; % Circle is code 1, center (.5,0), radius .2 C1 = [1,.5,0,.2]'; % Pad C1 with zeros to enable concatenation with R1 C1 = [C1;zeros(length(R1)-length(C1),1)]; geom = [R1,C1]; % Names for the two geometric objects ns = (char('R1','C1'))'; % Set formula sf = 'R1-C1'; % Create geometry g = decsg(geom,sf,ns); % Create geometry model model = createpde; % Include the geometry in the model and view the geometry geometryFromEdges(model,g); pdegplot(model,'EdgeLabels','on') xlim([-1.1 1.1]) axis equal``` ### Scalar Problem

• Edge 3 has Dirichlet conditions with value 32.

• Edge 1 has Dirichlet conditions with value 72.

• Edges 2 and 4 have Dirichlet conditions that linearly interpolate between edges 1 and 3.

• The circular edges (5 through 8) have Neumann conditions with `q = 0`, `g = -1`.

```applyBoundaryCondition(model,'dirichlet','Edge',3,'u',32); applyBoundaryCondition(model,'dirichlet','Edge',1,'u',72); applyBoundaryCondition(model,'neumann','Edge',5:8,'g',-1); % q = 0 by default```

Edges 2 and 4 need functions that perform the linear interpolation. Each edge can use the same function that returns the value $u\left(x,y\right)=52+20x$.

You can implement this simple interpolation in an anonymous function.

`myufunction = @(location,state)52 + 20*location.x;`

Include the function for edges 2 and 4. To help speed the solver, allow a vectorized evaluation.

```applyBoundaryCondition(model,'dirichlet','Edge',[2,4],... 'u',myufunction,... 'Vectorized','on');```

Solve an elliptic PDE with these boundary conditions, using the parameters `c = 1`, `a = 0`, and | f = 10|. Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse choose a maximum mesh size `Hmax = 0.1`.

```specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',10); generateMesh(model,'Hmax',0.1); results = solvepde(model); u = results.NodalSolution; pdeplot(model,'XYData',u)``` ### System of PDEs

Suppose that the system has `N = 2`.

• Edge 3 has Dirichlet conditions with values `[32,72]`.

• Edge 1 has Dirichlet conditions with values `[72,32]`.

• Edges 2 and 4 have Dirichlet conditions that interpolate between the conditions on edges 1 and 3, and include a sinusoidal variation.

• Circular edges (edges 5 through 8) have `q = 0` and `g = -10`.

```model = createpde(2); geometryFromEdges(model,g); applyBoundaryCondition(model,'dirichlet','Edge',3,'u',[32,72]); applyBoundaryCondition(model,'dirichlet','Edge',1,'u',[72,32]); applyBoundaryCondition(model,'neumann','Edge',5:8,'g',[-10,-10]);```

The first component of edges 2 and 4 satisfies the equation ${u}_{1}\left(x\right)=52+20x+10\mathrm{sin}\left(\pi {x}^{3}\right)$.

The second component satisfies ${u}_{2}\left(x\right)=52-20x-10\mathrm{sin}\left(\pi {x}^{3}\right)$.

Write a function file `myufun.m` that incorporates these equations in the syntax described in Nonconstant Boundary Conditions.

```function bcMatrix = myufun(location,state) bcMatrix = [52 + 20*location.x + 10*sin(pi*(location.x.^3)); 52 - 20*location.x - 10*sin(pi*(location.x.^3))]; % OK to vectorize end ```

Include this function in the edge 2 and edge 4 boundary condition.

```applyBoundaryCondition(model,'dirichlet','Edge',[2,4],... 'u',@myufun,... 'Vectorized','on');```

Solve an elliptic PDE with these boundary conditions, with the parameters `c = 1`, `a = 0`, and `f = (10,-10)`. Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse choose a maximum mesh size `Hmax = 0.1`.

```specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',[10;-10]); generateMesh(model,'Hmax',0.1); results = solvepde(model); u = results.NodalSolution; subplot(1,2,1) pdeplot(model,'XYData',u(:,1),'ZData',u(:,1),'ColorBar','off') view(-9,24) subplot(1,2,2) pdeplot(model,'XYData',u(:,2),'ZData',u(:,2),'ColorBar','off') view(-9,24)``` ##### Support Get trial now