Hydraulic orifice with constant cross-sectional area
Orifices
The Fixed Orifice block models a sharp-edged constant-area orifice, flow rate through which is proportional to the pressure differential across the orifice. The flow rate is determined according to the following equations:
where
q | Flow rate |
p | Pressure differential |
pA, pB | Gauge pressures at the block terminals |
CD | Flow discharge coefficient |
A | Orifice passage area |
ρ | Fluid density |
pcr | Minimum pressure for turbulent flow |
The minimum pressure for turbulent flow, pcr, is calculated according to the laminar transition specification method:
By pressure ratio — The transition from laminar to turbulent regime is defined by the following equations:
pcr = (pavg + patm)(1 – Blam)
pavg = (pA + pB)/2
where
pavg | Average pressure between the block terminals |
patm | Atmospheric pressure, 101325 Pa |
Blam | Pressure ratio at the transition between laminar and turbulent regimes (Laminar flow pressure ratio parameter value) |
By Reynolds number — The transition from laminar to turbulent regime is defined by the following equations:
where
DH | Orifice hydraulic diameter |
ν | Fluid kinematic viscosity |
Recr | Critical Reynolds number (Critical Reynolds number parameter value) |
The block positive direction is from port A to port B. This means that the flow rate is positive if it flows from A to B, and the pressure differential is determined as .
Use the Variables tab to set the priority and initial target values for the block variables prior to simulation. For more information, see Set Priority and Initial Target for Block Variables.
Fluid inertia is not taken into account.
Orifice passage area. The default value is 1e-4
m^2.
Semi-empirical parameter for orifice capacity characterization.
Its value depends on the geometrical properties of the orifice, and
usually is provided in textbooks or manufacturer data sheets. The
default value is 0.7
.
Select how the block transitions between the laminar and turbulent regimes:
Pressure ratio
—
The transition from laminar to turbulent regime is smooth and depends
on the value of the Laminar flow pressure ratio parameter.
This method provides better simulation robustness.
Reynolds number
—
The transition from laminar to turbulent regime is assumed to take
place when the Reynolds number reaches the value specified by the Critical
Reynolds number parameter.
Pressure ratio at which the flow transitions between laminar
and turbulent regimes. The default value is 0.999
.
This parameter is visible only if the Laminar transition
specification parameter is set to Pressure
ratio
.
The maximum Reynolds number for laminar flow. The value of the
parameter depends on the orifice geometrical profile. You can find
recommendations on the parameter value in hydraulics textbooks. The
default value is 12
, which corresponds to a round
orifice in thin material with sharp edges. This parameter is visible
only if the Laminar transition specification parameter
is set to Reynolds number
.
Parameters determined by the type of working fluid:
Fluid density
Fluid kinematic viscosity
Use the Hydraulic Fluid block or the Custom Hydraulic Fluid block to specify the fluid properties.
The block has the following ports:
A
Hydraulic conserving port associated with the orifice inlet.
B
Hydraulic conserving port associated with the orifice outlet.
Annular Orifice | Constant Area Hydraulic Orifice | Fixed Orifice Empirical | Fixed Orifice with Fluid Inertia | Orifice with Variable Area Round Holes | Orifice with Variable Area Slot | Variable Area Hydraulic Orifice | Variable Orifice