evfit
Extreme value parameter estimates
Syntax
parmhat = evfit(data)
[parmhat,parmci] = evfit(data)
[parmhat,parmci] = evfit(data,alpha)
[...] = evfit(data,alpha,censoring)
[...] = evfit(data,alpha,censoring,freq)
[...] = evfit(data,alpha,censoring,freq,options)
Description
parmhat = evfit(data)
returns maximum likelihood estimates of the
parameters of the type 1 extreme value distribution given the sample data in
data
. The sample data data
must be a
double-precision vector. parmhat(1)
is the location parameter
µ
, and parmhat(2)
is the scale parameter σ.
[parmhat,parmci] = evfit(data)
returns
95% confidence intervals for the parameter estimates on the µ
and
σ parameters in the 2-by-2 matrix parmci
.
The first column of the matrix of the extreme value fit contains the
lower and upper confidence bounds for the parameter µ
,
and the second column contains the confidence bounds for the parameter
σ.
[parmhat,parmci] = evfit(data,alpha)
returns
100(1 - alpha
)%
confidence intervals for the parameter estimates, where alpha
is
a value in the range [0 1]
specifying
the width of the confidence intervals. By default, alpha
is 0.05
,
which corresponds to 95% confidence intervals.
[...] = evfit(data,alpha,censoring)
accepts
a Boolean vector, censoring
, of the same size as data
,
which is 1
for observations that are right-censored
and 0
for observations that are observed exactly.
[...] = evfit(data,alpha,censoring,freq)
accepts
a frequency vector, freq
of the same size as data
.
Typically, freq
contains integer frequencies for
the corresponding elements in data
, but can contain
any nonnegative values. Pass in []
for alpha
, censoring
,
or freq
to use their default values.
[...] = evfit(data,alpha,censoring,freq,options)
accepts
a structure, options
, that specifies control parameters
for the iterative algorithm the function uses to compute maximum likelihood
estimates. You can create options
using the function statset
. Enter statset('evfit')
to
see the names and default values of the parameters that evfit
accepts
in the options
structure. See the reference page
for statset
for more information
about these options.
The type 1 extreme value distribution is also known as the Gumbel
distribution. The version used here is suitable for modeling minima;
the mirror image of this distribution can be used to model maxima
by negating X
. See Extreme Value Distribution for more details. If x has
a Weibull distribution, then X = log(x)
has the type 1 extreme value distribution.
Extended Capabilities
Version History
Introduced before R2006a