Global optimization with non linearly linked parameters
1 view (last 30 days)
Show older comments
I need help on how to do this kind of optimization; I have experimental data to fit to a model in the form of M = (2*A*x-B)/(C*x-exp(A^2+B^2)); C = f(ci), my problem is how to express A and B in the optimization problem since they are done with : A^2-B^2 = f(ai,bi) and 2*A*B = f(ai,bi), [C, A, B are arrays, ci,ai,bi are scalars and of course M is an array];
0 Comments
Accepted Answer
Alan Weiss
on 26 Apr 2016
I do not understand which are your control variables (ones that you want the solver to change in order to reach a minimum) and which, if any, are extra constant parameters or data.
You need to have all of your control variables in one vector variable that is usually called x. For example, if your control variables are A and B (matrices), then set
x = [A(:);B(:)];
This means make a vector out of the columns of A, and append to it a vector made out of the columns of B.
After you know exactly which are your control variables, you should be able to write your objective function and, if necessary, nonlinear constraint functions.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
More Answers (0)
See Also
Categories
Find more on Genetic Algorithm in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!