How to speedup mean and std calculation on GPU?

3 views (last 30 days)
Hello everyone, I am looking a way to speed up mean and std calculation on GPU. I run this code and it does take quite some time to complete, compared to the one if I do not use gpuArray. Maybe somebody would have any idea?
g_p is gpuArray with matrix of (1000000,5)
for q=1:n1-d
x2=g_p(d-w+q-1:d+q-2,:);
mean_x=mean(x2);
std_x=std(x2);
R = bsxfun(@minus,x2,mean_x);
x3=bsxfun(@rdivide,R,std_x)
end
///////////
or x3=arrayfun(@norm,x2)?

Accepted Answer

Jan
Jan on 17 Jun 2018
To calculate the standard deviation, the mean must be calculated again. Try to combine this:
x2 = g_p(d-w+q-1:d+q-2,:);
mean_x = sum(x2, 1) / w;
xc = x2 - mean_x; % Auto-expand: >= R2016b
% xc = bsxfun(@minus, x2, mean_x);
std_x = vecnorm(xc) / sqrt(s - 1); % vecnorm: >= R2017b
% std_x = sqrt(sum(xc .* xc, 1)) / sqrt(s - 1);
for the mean only the first and the last element changed between the iterations. Use this detail:
mean_x = sum(g_p(d-w:d-1, :) / w; % For q=1
for q = 1:n1-d
...
mean_x = mean_x - (g_p(d-w+q-1, :) + g_p(d+q-1, :)) / w;
end
  3 Comments
Jan
Jan on 18 Jun 2018
Without vecnorm you can use the line posted afterwards:
std_x = sqrt(sum(xc .* xc, 1)) / sqrt(s - 1);
I cannot test the code on a GPU. Maybe my suggestion give you at least an impression, of what could be tried to reduce the overhead.
Mantas Vaitonis
Mantas Vaitonis on 19 Jun 2018
Edited: Mantas Vaitonis on 19 Jun 2018
Yes thank You,this seem to do the trick, plus I did use cellfun and it managed to speedup even more.

Sign in to comment.

More Answers (0)

Categories

Find more on Linear Algebra in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!