simplifying an algebraic expression in two variables
7 views (last 30 days)
Show older comments
hello
I know that
sqrt ((x-1)^2 + (y-2)^2) + sqrt ((x+1)^2 + (y+2)^2) = 6
and
8*(x^2) - 4*x*y + 5*(y^2) = 36
are equivalent, but is there a way of having matlab deduce the second statement from the first?
regards, Danny.
0 Comments
Accepted Answer
Tanmay Das
on 6 Aug 2021
The following code may solve your problem:
clc;
clear ;
close all;
syms x y;
eqn = sqrt ((x-1)^2 + (y-2)^2) + sqrt ((x+1)^2 + (y+2)^2) == 6;
eqn1 = simplify(eqn^2);
eqn2 = expand(eqn1);
eqn3 = simplify(eqn2);
%As of now, MATLAB is not able to simplify expressions inside squre root by
%itself, so one needs to isolate it and then square both side
eqn4 = (x^2 - 2*x + y^2 - 4*y + 5)^(1/2)*(x^2 + 2*x + y^2 + 4*y + 5)^(1/2);
%isolating the square root term from rest of the equation
eqn5 = isolate(eqn3,eqn4);
%simplifying the equation
eqn6 = simplify(expand(eqn5^2));
%One can also solve the equation by executing the following line
sol = solve(eqn6,'ReturnConditions',true);
0 Comments
More Answers (0)
See Also
Categories
Find more on Equation Solving in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!