# How to show numeric solution instead of symbolic solution

6 views (last 30 days)
Tony Yu on 29 Jun 2020
Commented: Star Strider on 29 Jun 2020
Is there a way to make q_dot to show numeric solutions?
syms th1 th2 th3 th4 th5 th6 d1 d2 d3 d4 d5 d6 alpha1 alpha2 alpha3 alpha4 alpha5 alpha6 a1 a2 a3 a4 a5 a6 d1 d2 d3 d4 d5 d6 q_dot Js
%DH parameters
%a4 = 0
%a5 = 0
%a6 = 0
% Forward Kinematics
A01 = [cos(th1) -cos(alpha1)*sin(th1) sin(alpha1)*sin(th1) a1*cos(th1);
sin(th1) cos(alpha1)*cos(th1) -sin(alpha1)*cos(th1) a1*sin(th1);
0 sin(alpha1) cosd(alpha1) d1;
0 0 0 1];
A12 = [cos(th2) -cos(alpha2)*sin(th2) sin(alpha2)*sin(th2) a2*cos(th2);
sin(th2) cos(alpha2)*cos(th2) -sin(alpha2)*cos(th2) a2*sin(th2);
0 sin(alpha2) cos(alpha2) d2;
0 0 0 1];
A23 = [cos(th3) -cos(alpha3)*sin(th3) sin(alpha3)*sin(th3) a3*cos(th3);
sin(th3) cos(alpha3)*cos(th3) -sin(alpha3)*cos(th3) a3*sin(th3);
0 sind(alpha3) cos(alpha3) d3;
0 0 0 1];
A34 = [cos(th4) -cos(alpha4)*sin(th4) sin(alpha4)*sin(th4) a4*cos(th4);
sin(th4) cos(alpha4)*cos(th4) -sin(alpha4)*cos(th4) a4*sin(th4);
0 sin(alpha4) cos(alpha4) d4;
0 0 0 1];
A45 = [cos(th5) -cos(alpha5)*sin(th5) sin(alpha5)*sin(th5) a5*cos(th5);
sin(th5) cos(alpha5)*cos(th5) -sin(alpha5)*cos(th5) a5*sin(th5);
0 sin(alpha5) cos(alpha5) d5;
0 0 0 1];
A56 = [cos(th6) -cos(alpha6)*sin(th6) sin(alpha6)*sin(th6) a6*cos(th6);
sin(th6) cos(alpha6)*cos(th6) -sin(alpha6)*cos(th6) a6*sin(th6);
0 sind(alpha6) cos(alpha6) d6;
0 0 0 1];
A01
A02= A01*A12
A03= A01*A12*A23
%A04= A01*A12*A23*A34
%A05= A01*A12*A23*A34*A45
%A06= A01*A12*A23*A34*A45*A56
%last column of the Rotation matrix
Z0=[0 0 1]'
Z1=[0 -1 0]'
Z2=[0 -1 0]'
%Z3=[0 -1 0]'
%Z4=[0 0 -1]'
%Z5=[1 0 0]'
pe=A03(1:3,4:end);
%derivative of EE with respected q
Jv1 = jacobian([pe],[th1]);
Jv2 = jacobian([pe],[th2]);
Jv3 = jacobian([pe],[th3]);
%Jv4 = simplify(jacobian([pe],[th4]));
%Jv5 = simplify(jacobian([pe],[th5]));
%Jv6 = simplify(jacobian([pe],[d6]));
Jw1 = Z0;
Jw2 = Z1;
Jw3 = Z2;
%Jw4 = Z3;
%Jw5 = Z5;
%Jw6 is a prismetic joint
%Jw6 = [0 0 0]'
%combine Jv and Jw into on column
J1q = [Jv1(:);Jw1(:)];
J2q = [Jv2(:);Jw2(:)];
J3q = [Jv3(:);Jw3(:)];
%J4q = [Jv4(:);Jw4(:)];
%J5q = [Jv5(:);Jw5(:)];
%J6q = [Jv6(:);Jw6(:)];
J = [J1q J2q J3q] %J4q] %J5q J6q]
%cross producr method
%p0=[0 0 0]'
%p1=A01(1:3,4:end);
%p2=A02(1:3,4:end);
%p3=A03(1:3,4:end);
%p4=A04(1:3,4:end);
%p5=A05(1:3,4:end);
%pe=A06(1:3,4:end);
%pe10=simplify(pe-p0)
%pe20=simplify(pe-p1)
%pe30=simplify(pe-p2)
%pe40=simplify(pe-p3)
%pe50=simplify(pe-p4)
%pe60=simplify(pe-p5)
%Jv1=simplify(cross(Z0,pe10))
%Jv2=simplify(cross(Z1,pe20))
%Jv3=simplify(cross(Z2,pe30))
%Jv4=simplify(cross(Z3,pe40))
%Jv5=simplify(cross(Z4,pe50))
%Jv6=simplify(cross(Z5,pe60))
x = [5 5 10]'
J3 = J(1:3,:)
%extract J3 first 3 rows, all columns)
th1 = 1.3734
th2 = -0.4038
th3 = 1.4330
d1 = 475;
d2 = 0;
d3 = 0 ;
alpha1 = pi/2
alpha2 = 0;
alpha3 = 0;
d4 =0 ;
d5 = 0;
d6 =85;
a1 = 150;
a2 = 600;
a3 = sqrt(720^2+120^2);
% input
x = [5 5 10]'
q_dot = inv(J3)*x

Star Strider on 29 Jun 2020
The ‘q_dot’ variable cannot be expressed as a strictly numeric array because it contains symbolic variables.
The best you can do is:
q_dot_fcn = matlabFunction(q_dot)
producing:
q_dot_fcn =
function_handle with value:
@(a1,a2,a3,alpha1,alpha2,d2,d3,th1,th2,th3)[((a2.*cos(alpha1).*cos(th2).^2.*sin(th3)+a2.*cos(alpha1).*sin(th2).^2.*sin(th3)+a2.*sin(alpha1).*sin(alpha2).*cos(th3).*sin(th2)- ... Output truncated. Text exceeds maximum line length for Command Window display.
(The full espression goes for several hundred characters, so do not attempt to print it!)
Evaluate it with the appropriate arguments to get it as a matrix.

Show 1 older comment
Star Strider on 29 Jun 2020
For some reason, they did not get incorporated into the expression for ‘q_dot’, and even using subs will not do that, at least efficiently.
If you use:
q_dot_fcn = matlabFunction(q_dot);
and then:
q_dot_num = q_dot_fcn(a1,a2,a3,alpha1,alpha2,d2,d3,th1,th2,th3)
the result is:
q_dot_num =
-0.003638420519714
0.019521429645165
-0.021570010216009
So my approach will get you there!
.
Tony Yu on 29 Jun 2020
Thanks!
Star Strider on 29 Jun 2020
As always, my pleasure!