Cody

# Problem 2126. Split bread like the Pharaohs - Egyptian fractions and greedy algorithm

Solution 2155982

Submitted on 10 Mar 2020 by Asif Newaz
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
% Updated test suite to remove trivial solutions; % Small Vmin = 10; Vmax = 55; denom = floor(unique(egyptian_fraction(Vmin,Vmax))); egyptian_value = sum(1./denom); rel_tol = Vmin/Vmax*1e-6; actual_error = abs( egyptian_value - Vmin/Vmax ); assert(isequal(actual_error < rel_tol ,true))

a = 1 b = 66

2   Pass
% Pie Vmin = 113; Vmax = 355; denom = floor(unique(egyptian_fraction(Vmin,Vmax))); egyptian_value = sum(1./denom); rel_tol = Vmin/Vmax*1e-6; actual_error = abs( egyptian_value - Vmin/Vmax ); assert(isequal(actual_error < rel_tol ,true))

a = 97 b = 1420 a = 7 b = 4260 a = 1 b = 864780

3   Pass
% Ramanujan Vmin = 1023; Vmax = 1729; denom = floor(unique(egyptian_fraction(Vmin,Vmax))); egyptian_value = sum(1./denom); rel_tol = Vmin/Vmax*1e-6; actual_error = abs( egyptian_value - Vmin/Vmax ); assert(isequal(actual_error < rel_tol ,true))

a = 317 b = 3458 a = 29 b = 38038 a = 1 b = 4990586

4   Pass
% E Vmin = 27; Vmax = 183; denom = floor(unique(egyptian_fraction(Vmin,Vmax))); egyptian_value = sum(1./denom); rel_tol = Vmin/Vmax*1e-6; actual_error = abs( egyptian_value - Vmin/Vmax ); assert(isequal(actual_error < rel_tol ,true))

a = 2 b = 427 a = 1 b = 91378