Cody

# Problem 45964. Compute the nth Pythagorean prime

Solution 2589925

Submitted on 20 Jun 2020 by Tim
• Size: 66
• This is the leading solution.
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
n = 1; pp_correct = 5; [pp1,a1,b1] = PythagoreanPrime(n); assert(isequal(pp1,pp_correct)) assert(a1 == floor(a1) && b1 == floor(b1) && a1^2+b1^2 == pp1)

2   Pass
n = 5; pp_correct = 37; [pp1,a1,b1] = PythagoreanPrime(n); assert(isequal(pp1,pp_correct)) assert(a1 == floor(a1) && b1 == floor(b1) && a1^2+b1^2 == pp1)

3   Pass
n = 25; pp_correct = 257; [pp1,a1,b1] = PythagoreanPrime(n); assert(isequal(pp1,pp_correct)) assert(a1 == floor(a1) && b1 == floor(b1) && a1^2+b1^2 == pp1)

4   Pass
n = 125; pp_correct = 1657; [pp1,a1,b1] = PythagoreanPrime(n); assert(isequal(pp1,pp_correct)) assert(a1 == floor(a1) && b1 == floor(b1) && a1^2+b1^2 == pp1)

5   Pass
n = 625; pp_correct = 10313; [pp1,a1,b1] = PythagoreanPrime(n); assert(isequal(pp1,pp_correct)) assert(a1 == floor(a1) && b1 == floor(b1) && a1^2+b1^2 == pp1)

6   Pass
n = 3125; pp_correct = 62497; [pp1,a1,b1] = PythagoreanPrime(n); assert(isequal(pp1,pp_correct)) assert(a1 == floor(a1) && b1 == floor(b1) && a1^2+b1^2 == pp1)

7   Pass
n = 15625; pp_correct = 367229; [pp1,a1,b1] = PythagoreanPrime(n); assert(isequal(pp1,pp_correct)) assert(a1 == floor(a1) && b1 == floor(b1) && a1^2+b1^2 == pp1)

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!