Conversion from conic parameters to geometric parameters of ellipsoids
Conversion from conic parameters to geometric parameters of ellipsoids
% Here is a general conic equation in 3D
% A x2 + B y2 + C z2 + 2D xy +2E xz + 2F yz + 2G x + 2H y + 2I z = 1
%INPUT:
% v = [A,B,C,D,E,F,G,H,I]' vector of the conic coefficient
%OUTPUT
% center: center of ellipsoid (Xo,Yo,Zo)
% radii: radii of ellipsoid (a,b,c)
% R: Rotate matrix
% Angle: 3 rotational angles (alfax,alfay,alfaz) which represent rotations
% around x-,y- and z- axes respectively (degree)
% code is: 1 - ellipsoid
%
% 0 - not ellipsoid
How to cite this code:
BEKTAS, Sebahattin. Orthogonal distance from an ellipsoid. Bol. Ciênc. Geod. [online]. 2014, vol.20, n.4, pp. 970-983. ISSN 1982-2170.
Cite As
Sebahattin Bektas (2025). Conversion from conic parameters to geometric parameters of ellipsoids (https://www.mathworks.com/matlabcentral/fileexchange/48974-conversion-from-conic-parameters-to-geometric-parameters-of-ellipsoids), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Mathematics and Optimization > Mapping Toolbox > Geometric Geodesy >
- Radar > Mapping Toolbox > Geometric Geodesy >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.