Run Sequence Forecasting Using a GRU Layer on an FPGA
Reduce the time to train a sequence forecasting network by swapping out the LSTM later for a gated recurrent unit (GRU) layer. Use the deployed network to predict future values by using open-loop and closed-loop forecasting. Use MATLAB® to retrieve the prediction results from the target device.
Modified Waveform Data Network
The network attached to this example was trained using the Time Series Forecasting Using Deep Learning. In this example the LSTM layer was swapped out for a GRU layer. This example uses the WaveformData.mat
data set, which contains 2000 synthetically generated waveforms of varying lengths with three channels. This example uses a trained network with a GRU layer to forecast future values of the waveforms given the values from the previous time steps using both closed loop and open loop forecasting.
Load the Pretrained Network
To load the GRU layer network enter:
load grunet
Use the analyzeNetwork
function to obtain information about the network layers. the function returns a graphical representation of the network that contains detailed parameter information for every layer in the network.
analyzeNetwork(net)
Define FPGA Board Interface
Define the target FPGA board programming interface by using the dlhdl.Target
object. Specify that the interface is for a Xilinx board with an Ethernet interface.
To create the target object, enter:
hTarget_gru = dlhdl.Target('Xilinx',Interface='Ethernet');
To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:
hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat'); hTarget = dlhdl.Target('Xilinx',Interface='JTAG');
Prepare Network for Deployment
Prepare the network for deployment by creating a dlhdl.Workflow
object. Specify the network and the bitstream name. Ensure that the bitstream name matches the data type and the FPGA board. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data type.
hW_gru = dlhdl.Workflow(Network=net,Bitstream='zcu102_lstm_single',Target=hTarget_gru);
Tu run the example on the Xilinx ZC706 board, enter:
hW = dlhdl.Workflow(Network=net,Bitstream='zc706_lstm_single',Target=hTarget);
Compile the GRU Layer Network
Run the compile
method of the dlhdl.Workflow
object to compile the network and generate the instructions, weights, and biases for deployment. The total number of frames exceeds the default value of 30. Set the InputFrameNumberLimit
name-value argument to 1000
to run predictions in chunks of 1000 frames to prevent timeouts.
dn = compile(hW_gru,'InputFrameNumberLimit',1000)
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_lstm_single. ### The network includes the following layers: 1 'sequenceinput' Sequence Input Sequence input with 3 dimensions (SW Layer) 2 'gru' GRU GRU with 128 hidden units (HW Layer) 3 'fc' Fully Connected 3 fully connected layer (HW Layer) 4 'regressionoutput' Regression Output mean-squared-error with response 'Response' (SW Layer) ### Notice: The layer 'sequenceinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software. ### Notice: The layer 'regressionoutput' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software. ### Compiling layer group: gru.wh ... ### Compiling layer group: gru.wh ... complete. ### Compiling layer group: gru.rh ... ### Compiling layer group: gru.rh ... complete. ### Compiling layer group: gru.w1 ... ### Compiling layer group: gru.w1 ... complete. ### Compiling layer group: gru.w2 ... ### Compiling layer group: gru.w2 ... complete. ### Compiling layer group: fc ... ### Compiling layer group: fc ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "16.0 kB" "OutputResultOffset" "0x00004000" "16.0 kB" "SchedulerDataOffset" "0x00008000" "676.0 kB" "SystemBufferOffset" "0x000b1000" "20.0 kB" "InstructionDataOffset" "0x000b6000" "4.0 kB" "FCWeightDataOffset" "0x000b7000" "204.0 kB" "EndOffset" "0x000ea000" "Total: 936.0 kB" ### Network compilation complete.
dn = struct with fields:
weights: [1×1 struct]
instructions: [1×1 struct]
registers: [1×1 struct]
syncInstructions: [1×1 struct]
constantData: {{1×2 cell} [1×128 double]}
ddrInfo: [1×1 struct]
resourceTable: [6×2 table]
Program Bitstream onto FPGA and Download Network Weights
To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy
function of the dlhdl.Workflow
object. This function uses the output of the compile
function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages, and the required time to deploy the network.
deploy(hW_gru)
### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA. ### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
Test Network
Prepare the test data for prediction. Normalize the test data using the statistics calculated from the training data. Forecast the values using the GRU layer network. To forecast the values of future time steps of a sequence, specify the targets as the test sequences with values shifted by one time step. In other words, at each time step of the input sequence, the GRU layer network learns to predict the value of the next time step.
load WaveformData.mat data = cellfun(@(x)x',data,UniformOutput=false); numChannels = size(data{1},1); numObservations = numel(data); idxTrain = 1:floor(0.9*numObservations); idxTest = floor(0.9*numObservations)+1:numObservations; dataTrain = data(idxTrain); dataTest = data(idxTest); for n = 1:numel(dataTrain) X = dataTrain{n}; XTrain{n} = X(:,1:end-1); TTrain{n} = X(:,2:end); end muX = mean(cat(2,XTrain{:}),2); sigmaX = std(cat(2,XTrain{:}),0,2); muT = mean(cat(2,TTrain{:}),2); sigmaT = std(cat(2,TTrain{:}),0,2); for n = 1:size(dataTest,1) X = dataTest{n}; XTest{n} = (X(:,1:end-1) - muX) ./ sigmaX; TTest{n} = (X(:,2:end) - muT) ./ sigmaT; end
Make predictions using the test data.
YTest_gru = predict(hW_gru,XTest{1},Profile = 'on');
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 115. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26856 0.00012 115 3134945 8070.3 gru.wh 448 0.00000 gru.rh 7539 0.00003 memSeparator_0 95 0.00000 memSeparator_2 184 0.00000 gru.w1 7460 0.00003 gru.w2 7608 0.00003 gru.sigmoid_1 222 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 308 0.00000 gru.multiplication_4 344 0.00000 gru.multiplication_1 294 0.00000 gru.addition_2 324 0.00000 gru.addition_1 294 0.00000 gru.tanh_1 238 0.00000 gru.multiplication_3 388 0.00000 gru.addition_3 298 0.00000 fc 420 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
To evaluate the accuracy, calculate the root mean squared error (RMSE) between the predictions and the target for each test sequence.
for i = 1:size(YTest_gru,1) rmse(i) = sqrt(mean((YTest_gru(i) - TTest{1}(i)).^2,"all")); end
Visualize the errors in a histogram. Lower values indicate greater accuracy.
figure histogram(rmse) xlabel("RMSE") ylabel("Frequency")
Calculate the mean RMSE over all test observations.
mean(rmse)
ans = single
0.7688
Forecast Future Time Steps
To forecast the values of multiple future time steps, when given an input time series or sequence, use the predictAndUpdateState
function. This function predicts time steps one at a time and updates the network state at each prediction. For each prediction, use the previous prediction as the input to the function.
Visualize one of the test sequences in a plot.
idx = 2; X_gru = XTest{idx}; T_gru = TTest{idx}; figure stackedplot(X_gru',DisplayLabels="Channel " + (1:numChannels)) xlabel("Time Step") title("Test Observation " + idx)
Open-Loop Forecasting
Open-loop forecasting predicts the next time step in a sequence using only the input data. When making predictions for subsequent time steps, you collect the true values form your data source and use those as input. For example, suppose that you want to predict the value for time step of a sequence by using data collected in time steps 1 through . To make predictions for time step , wait until you record the true value for time step and use that value as input to make the next prediction. Use open-loop forecasting when you have true values to provide to the network before making the next prediction.
Initialize the network state by resetting the state using the resetState
function, then make an initial prediction using the first few time steps of the input data. Update the network state by using the first 75 time steps of the input data.
resetState(hW_gru)
offset = 75;
[~,~] = predict(hW_gru,X_gru(:,1:offset),KeepState=true,Profile='on');
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 75. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26867 0.00012 75 2044941 8068.7 gru.wh 438 0.00000 gru.rh 7528 0.00003 memSeparator_0 86 0.00000 memSeparator_2 184 0.00000 gru.w1 7540 0.00003 gru.w2 7629 0.00003 gru.sigmoid_1 222 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 338 0.00000 gru.multiplication_4 294 0.00000 gru.multiplication_1 334 0.00000 gru.addition_2 294 0.00000 gru.addition_1 294 0.00000 gru.tanh_1 238 0.00000 gru.multiplication_3 288 0.00000 gru.addition_3 348 0.00000 fc 420 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
To forecast further predictions, loop over time steps and update the network state by using the predict
function and setting the KeepState
name-value argument to true
. Forecast values for the remaining time steps of the test observation by looping over the time steps of the input data and using them as input to the network. The first prediction is the value that corresponds to the time step offset + 1
.
numTimeSteps = size(X_gru,2);
numPredictionTimeSteps = numTimeSteps - offset;
Y_gru = predict(hW_gru,X_gru(:,offset+1:offset+numPredictionTimeSteps),KeepState=true,Profile='on');
### Finished writing input activations. ### Running a sequence of length 116. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26738 0.00012 116 3161519 8072.1 gru.wh 448 0.00000 gru.rh 7569 0.00003 memSeparator_0 86 0.00000 memSeparator_2 184 0.00000 gru.w1 7570 0.00003 gru.w2 7499 0.00003 gru.sigmoid_1 222 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 308 0.00000 gru.multiplication_4 294 0.00000 gru.multiplication_1 294 0.00000 gru.addition_2 294 0.00000 gru.addition_1 294 0.00000 gru.tanh_1 288 0.00000 gru.multiplication_3 288 0.00000 gru.addition_3 298 0.00000 fc 410 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
Compare the predictions with the target values.
figure t = tiledlayout(numChannels,1); title(t,"Open Loop Forecasting with GRU layer") for i = 1:numChannels nexttile plot(T_gru(i,:)) hold on plot(offset:numTimeSteps,[T_gru(i,offset) Y_gru(i,:)],'--') ylabel("Channel " + i) end xlabel("Time Step") nexttile(1) legend(["Input" "Forecasted"])
Closed-Loop Forecasting
Closed-loop forecasting predicts subsequent time steps in a sequence by using the previous predictions as input. In this case, the model does not require the true values to make the prediction. For example, suppose that you want to predict the value for time steps through of the sequence by using data collected in time steps 1 through . To make predictions for time step , use the predicted value for time step as input. Use closed-loop forecasting to forecast multiple subsequent time steps or when you do not have true values to provide to the network before making the next prediction.
Initialize the network state by resetting the state using the resetState
function, then make an initial prediction, Z,
using the first few time steps of the input data. Update the network state by using the first 75 time steps of the input data.
resetState(hW_gru)
[Z, ~] = predict(hW_gru,X_gru,KeepState=true,Profile='on');
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 191. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26956 0.00012 191 5206622 8070.5 gru.wh 448 0.00000 gru.rh 7549 0.00003 memSeparator_0 96 0.00000 memSeparator_2 185 0.00000 gru.w1 7539 0.00003 gru.w2 7608 0.00003 gru.sigmoid_1 221 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 308 0.00000 gru.multiplication_4 324 0.00000 gru.multiplication_1 324 0.00000 gru.addition_2 324 0.00000 gru.addition_1 344 0.00000 gru.tanh_1 228 0.00000 gru.multiplication_3 308 0.00000 gru.addition_3 298 0.00000 fc 460 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
To forecast further predictions, loop over time steps and update the network state by using the predict
function and setting the KeepState
name-value argument to true
. Forecast the next 200 time steps by iteratively passing the previously predicted value to the network. Because the network does not require the input data to make any further predictions, you can specify any number of time steps to forecast.
numPredictionTimeSteps = 200;
Xt_gru = Z(:,end);
Y_gru = zeros(numChannels,numPredictionTimeSteps);
fprintf("Run %d predictions:\n", numPredictionTimeSteps);
Run 200 predictions:
for t = 1:numPredictionTimeSteps [Y_gru(:,t),~] = predict(hW_gru,Xt_gru,KeepState=true); Xt_gru = Y_gru(:,t); end
Visualize the forecasted values in a plot.
offset = size(X_gru,2); numTimeSteps = offset + numPredictionTimeSteps; figure t = tiledlayout(numChannels,1); title(t,"Closed Loop Forecasting with GRU layer") for i = 1:numChannels nexttile plot(T_gru(i,1:offset)) hold on plot(offset:numTimeSteps,[T_gru(i,offset) Y_gru(i,:)],'--') ylabel("Channel " + i) end xlabel("Time Step") nexttile(1) legend(["Input" "Forecasted"])
Closed-loop forecasting allows you to forecast an arbitrary number of time steps, but can be less accurate when compared to open-loop forecasting because the network does not have access to the true values during the forecasting process.
Compare Network Predictions
Compare the predictions of the LSTM layer network to the GRU layer network. This image shows the comparison between the GRU layer network and LSTM layer network for open loop forecasting. The GRU layer network has a performance of 8070.5 frames per second and the LSTM layer network has a performance of 6463.1 frames per second. To learn how to deploy the LSTM layer network to an FPGA, see Run Sequence Forecasting on FPGA by Using Deep Learning HDL Toolbox.
This image shows the comparison between the GRU layer network and LSTM layer network for closed loop forecasting.
See Also
dlhdl.Target
| dlhdl.Workflow
| compile
| deploy
| predict
| predictAndUpdateState
| resetState