Obtaining Endpoints of the Efficient Frontier
Often when using a Portfolio
object, you might be interested in the endpoint portfolios for the efficient frontier. Suppose that you want to determine the range of returns from minimum to maximum to refine a search for a portfolio with a specific target return. Use the estimateFrontierLimits
function to obtain the endpoint portfolios.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontierLimits(p); disp(pwgt)
0.8891 0 0.0369 0 0.0404 0 0.0336 1.0000
The estimatePortMoments
function shows the range of risks and returns for efficient portfolios:
[prsk, pret] = estimatePortMoments(p, pwgt); disp([prsk, pret])
0.0769 0.0590 0.3500 0.1800
Starting from an initial portfolio, estimateFrontierLimits
also returns purchases and sales to get from the initial portfolio to the endpoint portfolios on the efficient frontier. For example, given an initial portfolio in pwgt0
, you can obtain purchases and sales:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = setInitPort(p, pwgt0); [pwgt, pbuy, psell] = estimateFrontierLimits(p); display(pwgt)
pwgt = 4×2
0.8891 0
0.0369 0
0.0404 0
0.0336 1.0000
display(pbuy)
pbuy = 4×2
0.5891 0
0 0
0 0
0 0.9000
display(psell)
psell = 4×2
0 0.3000
0.2631 0.3000
0.1596 0.2000
0.0664 0
If you do not specify an initial portfolio, the purchase and sale weights assume that your initial portfolio is 0
.
See Also
Portfolio
| estimateFrontier
| estimateFrontierLimits
| estimatePortMoments
| estimateFrontierByReturn
| estimatePortReturn
| estimateFrontierByRisk
| estimatePortRisk
| estimateFrontierByRisk
| estimateMaxSharpeRatio
| setSolver
Related Examples
- Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object
- Creating the Portfolio Object
- Working with Portfolio Constraints Using Defaults
- Estimate Efficient Frontiers for Portfolio Object
- Asset Allocation Case Study
- Portfolio Optimization Examples Using Financial Toolbox
- Portfolio Optimization with Semicontinuous and Cardinality Constraints
- Black-Litterman Portfolio Optimization Using Financial Toolbox
- Portfolio Optimization Using Factor Models
- Portfolio Optimization Using Social Performance Measure
- Diversify Portfolios Using Custom Objective