createMLPNetwork
Create and initialize a Multi-Layer Perceptron (MLP) network to be used within a neural state-space system
Since R2022b
Description
creates a multi-layer perceptron (MLP) network dlnet = createMLPNetwork(nss,type)dlnet of type
type to approximate either the state, (the non-trivial part of) the
output, the encoder, or the decoder function of the neural state space object
nss. For example, to specify the network for the state function, use
nss.StateNetwork = createMLPNetwork(nss,"state",...)
nss.OutputNetwork(2) = createMLPNetwork(nss,"output",...)
nss.Encoder = createMLPNetwork(nss,"encoder",...)
nss.Decoder = createMLPNetwork(nss,"decoder",...)
specifies name-value pair arguments after any of the input argument in the previous syntax.
You can use name-value pair arguments to set the number of layers, the number of neurons per
layer, or the type of their activation function.dlnet = createMLPNetwork(___,Name=Value)
For example, dlnet = createMLPNetwork(nss,"output",LayerSizes=[4
3],Activations="sigmoid") creates an output network with two hidden layers
having four and three sigmoid-activated neurons, respectively.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
Version History
Introduced in R2022b
See Also
Objects
idNeuralStateSpace|nssTrainingADAM|nssTrainingSGDM|nssTrainingRMSProp|nssTrainingLBFGS|idss|idnlgrey
Functions
setNetwork|nssTrainingOptions|nlssest|generateMATLABFunction|idNeuralStateSpace/evaluate|idNeuralStateSpace/linearize|sim